

IT Infrastructure

Automation Using

Ansible

Guidelines to Automate the Network,

Windows, Linux, and Cloud Administration

Waqas Irtaza

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-91030-032

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without the

prior written permission of the publisher with the exception to the

program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means

of publication, photocopy, recording, or by any electronic and

mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the

best of author’s and publisher’s knowledge. The author has made

every effort to ensure the accuracy of these publications, but

publisher cannot be held responsible for any loss or damage

arising from any information in this book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications cannot

guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

NAZMA AND ZIMAL

My wife and daughter, for letting me

sacrificing family time in peruse of my passion

About the Author

Waqas Irtaza is an experienced IT professional, who for the past

11 years working cross infrastructure domains. He started his

career with system administration, then move to network, wireless

and cloud administration. Later in his career he start using his

diverse experience in Infrastructure automation. He is certified

from almost all technology leaders Cisco, Microsoft, AWS, PMI,

EC-Council and Linux Foundation.

He has started his automation journey with small python and

shell scripts. He managed to write complex script later in his

career to automate the day to day repetitive work for cross IT

infrastructures.

Ansible was a pleasant surprise for him, since complex IT task

can be managed with simple Ansible playbooks. This simplicity

and diversity of Ansible encourage him to write this book.

Outside work, Waqas like cycling and horse riding in addition to

help, coach, and mentor young people in taking up their careers

in technology.

About the Reviewer

Sumit Jaiswal has 10 years of industry experience in the

development domain with core development technologies like

Python, C++, and C#. He's currently working as a Senior software

engineer under the Ansible automation team and working on

developing content for the networking and security domain. He's

an enthusiast of open-source projects.

Acknowledgement

There are a few people I want to thank for the continued and

ongoing support they have given me during the writing of this

book. First and foremost, I would like to thank my wife and

daughter, Nazma and Zimal for putting up with me while I was

spending many weekends and evenings on writing—I could have

never completed this book without their support.

This book wouldn’t have happened if I hadn’t had the support

from my line Manager Mr. John Daniel and Manager Technology

Command Centre Mr. Manoj Panicker. My gratitude goes to my

team Technology Command Centre (TCC) at The Emirates Group,

especially Mr. Ahmed Humayun Zaheer, for providing valuable

insights and expert opinions.

Finally, I would like to thank BPB Publications for giving me this

opportunity to write my first book for them.

Preface

Ansible is a powerful open source automation language. Uniquely,

it’s also a deployment and orchestration tool. While Ansible

provides more productive drop-in replacements for many core

capabilities in other automation solutions, it also seeks to solve

other major unsolved IT challenges.

Ansible is an open-source automation tool, or platform, used for

IT tasks such as configuration management, application

deployment, service orchestration, and infrastructure provisioning.

Automation is crucial these days, with IT environments that are

complex and often need to scale quickly for system, network and

cloud administrators and developers to keep up if they had to do

everything manually. Automation simplifies complex infrastructure

tasks, not just making developers’ jobs more manageable but

allowing them to focus attention on other tasks that add value to

an organization. In other words, it frees up time and increases

efficiency. And Ansible, as noted above, is rapidly rising to the top

in the world of automation tools.

When I start learning Ansible and gone through couple of books I

have noticed that I have to toggle here and there to clear Ansible

concepts. Therefore, I thought to come up with a book which

covers all aspects of infrastructure administration. This book begin

with Ansible basics so anyone with no automation experience can

start from there. Once basics are cleared each chapter is

specifically designed for respective technology. Over the course of

7 chapters in this book, you will learn the following:

Chapter 1 Lab setup and introduction to ansible and core

concepts

Chapter 2 Understand Ansible Ad-Hoc and playbook with

examples. This chapter also covers the core concepts and practical

implementations.

Chapter 3 This chapter covers the Ansible advance concepts which

will help reader writing professional playbooks.

Chapter 4 is a key chapter for network administration. This

chapter will discuss one liner Ad-Hoc commands which are handy

for network administrators. Later this chapter discuss advance

Ansible concepts specifically for network administration

Chapter 5 is also a key chapter for system administration which

covers both Linux and Windows Infrastructures for automation.

Chapter 6 is a key chapter for DevOps and cloud Administrators.

It covers Ansible automation for the public and private clouds in

addition to Docker and Kubernates.

Chapter 7 is the final chapter that discusses recommendation and

best practices for Ansible.

Downloading the coloured images:

Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/f936d4

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content to

provide with an indulging reading experience to our subscribers.

Our readers are our mirrors, and we use their inputs to reflect

and improve upon human errors, if any, that may have occurred

during the publishing processes involved. To let us maintain the

quality and help us reach out to any readers who might be

having difficulties due to any unforeseen errors, please write to us

at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by

the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade to

the eBook version at www.bpbonline.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get

in touch with us at business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up

for a range of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit

www.bpbonline.com and apply today. We have worked with

thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You

can make a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at In

case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of books

and videos available at Check them out!

PIRACY

If you come across any illegal copies of our works in any form

on the internet, we would be grateful if you would provide us

with the location address or website name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please visit

REVIEWS

Please leave a review. Once you have read and used this book,

why not leave a review on the site that you purchased it from?

Potential readers can then see and use your unbiased opinion to

make purchase decisions, we at BPB can understand what you

think about our products, and our authors can see your feedback

on their book. Thank you!

For more information about BPB, please visit

Table of Contents

1. Up and Running with Ansible

Structure

Objective

Introduction to Ansible

Lab setup

Infrastructure preparation for Ansible

Ansible installation

Control node setup

Verify the Ansible installation

Managed node setup

Important concepts about Ansible

Ansible Inventory

Ansible configuration file

Ansible modules

Command

Shell

RAW

PING

Copy

File

YUM/APT

Basic understanding of YAML

Conclusion

Multiple choice questions

Multiple choice questions answers

Points to remember

Key terms

2. Ansible Basics

Structure

Objective

Ansible ad-hoc mode

Pattern

Inventory

Modules

Examples for ad-hoc mode

Working with host environmental variable

Managing files

Managing packages

Managing users and groups

Managing services

Gathering facts

Ansible playbooks

Ansible variables

User defined variables

Built-in variables

Ansible output

Conditional statements in Ansible

Loops in Ansible

Install listed software on Ubuntu machines

Display content of two files

Print a sequence from 0 to 10

Ansible handler

Ansible error handling

Ignoring failed commands

Resetting unreachable hosts

Controlling what defines failure

Ansible Vault

Modify the playbook

Run the playbook

Conclusion

Multiple choice questions

Multiple choice answers

Points to remember

Key terms

3. Ansible Advance Concepts

Structure

Objective

Managing task control

With_items

Nested loops (with_nested)

When statement

Registering variables

Handler

Tags

Dealing with errors

Blocks

Ansible file separation

Ansible include statement

Ansible roles

Directory structure for role

Role variables

Defining role dependencies

Order of execution in role

Ansible Galaxy

Galaxy CLI tool

Ansible optimization

Host patterns

Configuring delegation

Delegation host outside of inventory

Parallelism in Ansible

Asynchronous tasks

Ansible wait_for

Ansible async_status

Troubleshooting Ansible

Ansible logging

Ansible common errors

Troubleshooting managed hosts

Ansible modules for troubleshooting

Ansible ad-hoc commands for troubleshooting

Ansible file lookup

Ansible template

Ansible dynamic inventory

Ansible filters

Conclusion

Multiple choice questions

Multiple choice question answers

Points to remember

Key terms

4. Ansible for Network Administration

Structure

Objective

Lab setup

Network administration with RAW module

Troubleshooting with RAW module

Ansible network modules

New concepts for network modules

Network communication protocol

Network platform

Privilege escalation

Birds eye view for network modules

Understand Cisco ios_command

Parameters for ios_command

Understand Juniper junos_command

Parameters for junos_command

Additional requirements for junos_command module

Understand Cisco ios_config

Parameters for ios_config

Understand Juniper junos_config

Parameters for junos_config

Additional requirements for junos_config module

Ansible custom filter

Template playbook for network administration

Conclusion

Multiple choice questions

Multiple choice questions answer

Points to remember

Key terms

5. Ansible for System Administration

Structure

Objective

Lab setup

System administration

Execute commands on remote machines

Remote command execution modules for Linux servers

Ansible command module

Parameters for command module

Ansible shell module

Parameters for shell module

Remote command execution modules for Windows Servers

Ansible win_command module

Parameters for win_command module

Ansible win_shell module

Parameters for win_shell module

Bulk scripts execution on remote machines

Ansible script module

Parameters for script module

User management

Modules for user management in Linux servers

Ansible user module

Parameters for user module

Modules for user management in Windows servers

Ansible win_domain_user module

Parameters for win_domain_user

Ansible win_domain_computer module

Parameters for win_domain_computer module

Package management

Ansible package management module for Linux servers

Ansible package module

Parameters package module

Ansible package management module for Windows servers

Ansible win_package module

Parameter for win_package module

Ansible win_feature module

Parameters for win_feature module

Service management

Ansible service management modules for Linux servers

Ansible service module

Parameters for Ansible service module

Ansible service management modules for Windows servers

Ansible win_service module

Parameter for win_service module

Files and folder management

Ansible file and folder management modules for Linux servers

Ansible copy module

Parameters for copy module

Ansible fetch module

Parameters for fetch module

Ansible file module

Parameters for file module

Ansible lineinfile module

Parameters for lineinfile module

Ansible unarchive module

Parameters for unarchive module

Ansible file and folder management modules for Windows Servers

Ansible win_copy module

Parameters for win_copy module

Ansible win_file module

Parameter for win_file module

Ansible win_find module

Ansible win_unzip module

Firewall management

Ansible firewall management module for Linux servers

Ansible firewall module

Parameters for Ansible firewalld module

Ansible firewall management module for Windows servers

Ansible win_firewall module

Parameters for win_firewall module

Ansible win_eventlog module

Parameters win_eventlog module

Conclusion

Points to remember

Multiple choice questions

Multiple choice questions answers

Key terms

6. Ansible for Cloud Administration

Structure

Objective

Administrating Amazon AWS with Ansible

Presenting some selected Ansible modules for AWS

Ansible amazon.aws.ec2_ami module

Parameters for amazon.aws.ec2_ami module

Ansible amazon.aws.ec2_vol module

Parameters for amazon.aws.ec2_vol module

Ansible amazon.aws.ec2_eni module

Parameters for amazon.aws.ec2_eni module

Ansible amazon.aws.ec2 module

Parameters for amazon.aws.ec2 module

Ansible amazon.aws.aws_s3 module

Parameters for amazon.aws.aws_s3 module

Google Cloud administration with Ansible

Selected Ansible modules for Google Cloud

Ansible gcp_compute_disk module

Parameters for gcp_compute_disk module

Ansible gcp_compute_image module

Parameter for gcp_compute_image module

Ansible gcp_compute_network module

Parameter for gcp_compute_network module

Ansible gcp_compute_route module

Parameters for gcp_compute_route module

Ansible gcp_compute_router module

Parameter for gcp_compute_router module

Ansible gcp_compute_instance module

Parameter for gcp_compute_instance module

Ansible gcp_storage_bucket module

Parameter for gcp_storage_bucket module

Microsoft Azure administration with Ansible

Selected Ansible modules for Microsoft Azure

Ansible azure_rm_image module

Parameter for azure_rm_image module

Ansible azure_rm_manageddisk module

Parameter for azure_rm_ manageddisk module

Ansible azure_rm_networkinterface module

Parameter for azure_rm_ networkinterface module

Ansible azure_rm_route module

Parameter for azure_rm_ route module

Ansible azure_rm_virtualnetwork module

Parameter for azure_rm_ virtualnetwork module

Ansible azure_rm_virtualmachine module

Parameter for azure_rm_virtualmachine module

Ansible azure_rm_storageblob module

Parameter for azure_rm_storageblob module

Docker Administration with Ansible

Selected Ansible Modules for Docker

Ansible docker_image module

Parameter for docker_image

Ansible module docker_network

Parameters for docker_container

Ansible module docker_ volume

Parameter for docker_ volume

Ansible module docker_container

Parameter for docker_container

Kubernetes (K8) administration with Ansible

Selected Ansible modules for Kubernetes

Ansible k8s_info module

Parameters for k8s_info module

Ansible community.kubernetes.k8s module

Parameters for community.kubernetes.k8s module

Ansible community.kubernetes.k8s_scale module

Parameters for community.kubernetes.k8s_scale module

Ansible community.kubernetes.k8s_service module

Parameters for community.kubernetes.k8s_service module

Conclusion

Multiple choice questions

Multiple choice question answers

Points to remember

7. Ansible Tips and Tricks

Structure

Objective

Ansible directory layout

Import playbook

Group and host variable

Encrypting content with Ansible Vault

Inventory for cloud and containers

Staging and production

Bulk software installation or rolling updates

Always mention the state

Ansible facts

Whitespace and comments

Naming everything

Keep it simple

Version control

Ansible documentation

Graph your inventory

List your inventory

Check Ansible syntax

Ansible callback plugin

Conclusion

Multiple choice questions

Multiple choice question answers

Points to remember

Index

CHAPTER 1

Up and Running with Ansible

Ansible is a simple open-source engine which automates the

application deployment, infrastructure service orchestration, cloud

provisioning, and many other IT tools. Ansible is completely

agentless, which means that it works by connecting your nodes

through SSH. Most of the current technologies use SSH as a

default administration tool, whether it is a public or a private

cloud platform, networking equipment, or a locally hosted ESX,

Windows, or Linux servers. Henceforth, Ansible has a diverse

scope.

Moreover, if you want the other methods for a remote connection

like those options are also available. So, let’s begin our journey

and start exploring what to expect from this chapter.

Structure

In this chapter, we will cover the following topics:

Introduction to Ansible

Lab setup

Important concepts about Ansible

Basic understanding of YAML

Objective

After studying this chapter, you should be able to do the

following:

Understand why Ansible is popular.

Install Ansible and set up your environment.

Understand the Ansible components.

Understand the YAML syntax.

Introduction to Ansible

If you are a Systems Administrator, Network Administrator, or just

anybody working in the IT, you were probably involved in doing a

lot of repetitive tasks in your environment, whether it was to

configure thousands of routers and switches, create new virtual

machines, apply configurations, patch bulk of servers, migrations,

deploy applications, or even perform security and compliance

audits.

All of these repetitive tasks involve execution of similar commands

on thousands of different devices, while maintaining the right

sequence of events. Smart people develop scripts to automate

these tasks, but it requires coding skills; regular IT administrators

don’t have the professional coding skills, and an IT developer with

good coding skills don’t have the strong infrastructure knowledge.

Hence, there is a gap which Ansible leverages.

Ansible is a powerful IT automation tool that you can quickly

learn. It's simple enough for everyone in IT, yet powerful enough

to automate even the most complex deployments.

The following are some products related to Ansible:

Ansible An open-source automation platform.

Ansible A website with a large catalogue of community created

roles.

Ansible A web application and REST API solution for Ansible.

The main focus of the book is the Ansible core. The following are

some of the Ansible use cases:

Configuration management

Deployment

Orchestration

Provisioning

Let's explore the use cases with examples. Imagine you have a

number of servers in your environment that you would like to

patch and restart in a particular order. Some of them are

application servers and the others are database servers. So, first

you would patch the servers, and power down the application

servers, followed by the database servers, then power up the

database servers, and once the database is online, then power up

the application servers. You could write an Ansible playbook to get

this done in a matter of minutes and simply invoke the Ansible

playbook every time you wish to perform this patching activity.

Similarly, if you have to enable the port security on all the

switches in the network, which is a repetitive work across the

network, and if this needs to be performed on thousands of

switches, a simple Ansible playbook can achieve this task.

Let's take a look at a complex example. Let’s suppose, we are

setting up a complex infrastructure that spans across public and

private cloud and hundreds of VMs. With Ansible, you could

provision the hosts on public clouds like Azure or AWS and

provision private cloud like OpenStack or in VMware based

infrastructure and move onto configuring the applications on those

systems and set up communications between them. There are a

lot of built-in modules available in Ansible that supports these

kinds of operations and many more. We will be exploring them in

the following chapters.

The following block diagram will clarify the Ansible key

components:

Figure 1.1: Ansible key components

To understand better, the following is the definition of each

Ansible component:

Ansible Control Ansible Control Node is any machine which has

Ansible installed. It must be a Linux machine; it can’t be any

Windows machine. This is the one machine where the installation

is required.

Ansible Managed Ansible Managed Nodes are servers or any IT

devices, which we want to manage through Ansible. Ansible

Managed Nodes are also called Ansible installation is not required

on hosts.

Inventory is a list of hosts. We can organize the hosts by nesting,

and creating groups for scaling. Static and dynamic inventories are

available, which we will discuss later.

A Playbook is an ordered list of saved tasks, which can run

repeatedly. Playbooks gives a programmable flavor to Ansible by

allowing variable, loops, and conditional statements. Playbooks are

written in YAML format.

Lab setup

Ansible installation is extremely simple; just a couple of

commands and you have a fully functional Ansible control node.

However, our goal is not just to install Ansible, but to understand

the infrastructure requirement and have a fully functional lab to

follow along the practical examples. Let’s prepare the lab by

following these processes.

Infrastructure preparation for Ansible

We will be setting up an entire lab environment on our laptop

from scratch. For this, we will use a virtualization tool called

Oracle since it is open source and works with all the flavors of

operating systems like Windows, Linux, and OSX. We will first

install the Oracle VirtualBox on our laptop and then install the

CentOS or Ubuntu operating systems; I have created one Ansible

control node on Ubuntu and four managed nodes, two on CentOS

and two on Ubuntu. The following screenshot shows the VMs on

VirtualBox:

Figure 1.2: VMs on VirtualBox

Having four managed nodes is not required if you have a low

specification laptop, a single Linux host can also be used as both

the control node and the managed nodes.

We will not cover the CentOS/Ubuntu installation, since it is out

of our scope and a lot of YouTube videos are available to achieve

it. We will cover the Ansible installation after the operating system

installation.

The following is the basic configuration on all the hosts before

starting the Ansible installation:

Figure 1.3: Basic configuration

Ansible works fine with IP address but it doesn’t look

professional. Therefore, we will resolve the IP address to host

name, which is not compulsory. We can copy the following

content in the /etc/hosts file in all the Linux systems to resolve

the host names to their respective IP addresses:

Figure 1.4: Host file for name resolution

Once copied, we will be able to ping all the servers by their

respective host names. At this point, our infrastructure is ready to

install the Ansible.

Ansible installation

In this section, we will cover the Ansible installation on the

Ansible control node and also see all possible options that are

available for the Ansible managed nodes. Let’s begin.

Control node setup

The Ansible installation is only required on control node. Ansible

has a very simple installation process; just a few commands and

you have a fully functional Ansible control node. All you need to

do is go to the Ansible documentation and complete the provided

steps. The following is a screenshot taken from the Ansible official

documentation, which has a diverse range of installation options

against each operating system:

Figure 1.5: Installation options for Ansible

In the preceding screenshot, we can see that we have several

installation options based on the operating system. We have the

Ubuntu operating system as the Ansible control node, so the

following commands will install the Ansible:

$ sudo apt update

$ sudo apt install software-properties-common

$ sudo apt-add-repository --yes --update ppa:ansible/ansible

$ sudo apt install ansible

Verify the Ansible installation

The following command on the Ansible control node will confirm

if Ansible is properly installed:

ansible@master:~$ ansible --version

ansible 2.9.6

config file = /etc/ansible/ansible.cfg

configured module search path =

['/home/ansible/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

ansible python module location = /usr/lib/python3/dist-

packages/ansible

executable location = /usr/bin/ansible

python version = 3.8.2 (default, Jul 16 2020, 14:00:26) [GCC 9.3.0]

ansible@master:~$

Managed node setup

Ansible has a range of options when it comes to manage nodes;

we can leverage Ansible even without configuring the manage

nodes. All we need is an SSH connection to the remote machine

and a privileged user. This is a distinctive option in Ansible in

comparison to the other automation tools, which require client

software installation on all manage nodes.

For example, you have an infrastructure consisting of thousands of

managed servers; installing the client software itself becomes a

huge task. Moreover, if you are managing the networking devices,

it will not let you install any client software.

The Ansible manage node setup has several options which makes

Ansible a unique automation tool, which can automate almost any

IT equipment with SSH access.

The following sections talk about the available options for

managing node setup.

Password less login

This is a very useful option available in the Linux operating

systems. It allows the administrators to login on the remote

servers without typing the passwords. Suppose if we are

administrating thousands of servers, each time when you login,

you have to type the password, which is time consuming and

hectic as well. In order to setup a password less login, we have

to complete the following steps:

Create the SSH key on the Ansible control node with the

following command, just press Enter on each input, which means,

select the default options and the SSH key will be created:

$ ssh-keygen

Copy this SSH key on all the manage nodes with the following

commands:

$ ssh-copy-id ansible@cen_node_01

$ ssh-copy-id admin1@cen_node_02

$ ssh-copy-id ansible@ubu_node_01

When you execute the preceding command, the system will require

the password one last time. If the preceding command executes

without any error, a password less login is established, which can

be verified with the following commands:

$ ssh cen_node_01 hostname

$ ssh cen_node_02 hostname

$ ssh ubu_node_01 hostname

$ ssh ubu_node_02 hostname

We purposely excluded the ubu_node_02 to see the error. We will

be fixing it later when we discuss the inventory file.

Manage hosts with SSH credential

This is the easy-to-use option since we don’t have to do any

configuration on the manage nodes. This is particularly useful

when we are writing playbooks for the networking devices like

routers and switches.

If we add the following section in the inventory file, Ansible will

use these credentials to login to the manage nodes:

[all:vars]

ansible_connection=ssh

ansible_port=22

ansible_user=admin

ansible_pass=P@$$word123

Ansible VAULT

Manage host with SSH is a good option but it saves the

password in clear text, which is a huge security risk. Therefore,

Ansible comes with the Ansible VAULT, which encrypts the

credential and only decrypts it before login. We will discuss the

Ansible VAULT in the later chapters.

If you are following through the lab, then you can copy the

following scripts in a file, give it an executive permission, and

run. You will be able to automate the stop and start of all VMs.

This script will work on any Linux box or OSX. For Windows, you

might have to adjust a little bit.

Figure 1.6: Command to automate the virtual lab setup

Important concepts about Ansible

At this point you should have a fully functional Ansible lab setup,

which includes a control node named as master and four

managed nodes. Ping command is used in any network to check

the connectivity. Ansible has a ping module which does exactly

same, If we use the ping module to test the lab setup, we will

get the following reply from active nodes. Don’t worry we will

discuss each and every module and required parameters in details.

For the time being, just run the following command:

Figure 1.7: Output of ping module

The following are the key Ansible concepts which are essential to

understand Ansible:

Ansible Inventory

Ansible Configuration File

Ansible Modules

Ansible Inventory

Ansible works against multiple managed hosts in your

infrastructure, at the same time, using a list or group of lists

known as Once your inventory is defined, you can use the

patterns to select the hosts or groups that you want Ansible to

run against.

The default inventory location is as follows:

When running the scripts, we can provide our own inventory

location. So, if we have multiple scripts on different nodes, we

can differentiate them with their own inventory files.

We can put the host IP address, hostname, or create groups

including the hostname or IP address in the inventory file:

all is a special default group which includes all the hosts from

the inventory. Duplicating hosts in different groups is allowed.

Nested grouping is allowed. Adding a range of hosts is also

allowed, like the following:

[db]

db[01:50].example.com

The preceding inventory means the group db has fifty hosts

starting from db01.example.com to The same is valid for alphabet,

like the following:

[db]

db-[a:f].example.com

The preceding inventory means the group db has six hosts

starting from db-a.example.com to

Variables in inventories

To change the default HTTP port for the web server, we can use

the following variables:

[atlanta]

host1 http_port=80 maxRequestsPerChild=808

host2 http_port=303 maxRequestsPerChild=909

If we have to change the SSH specific configuration, the following

variables will be used:

Host3.example.com:5309

#Change SSH user for specific host

host1.example.com ansible_connection=ssh ansible_user=myuser

ansible_pass=”PWD”

host2.example.com ansible_connection=ssh

ansible_user=myotheruser

For the lab setup, let’s take the following sample inventories.

Sample inventory file

Let’s take the sample files for the following two scenarios:

One VM as control and four VMs as managed nodes.

Single VM as control and managed node.

One VM as control and four VMs as managed nodes

The following is the inventory file for our lab setup in which we

have four managed nodes:

[centos]

cen_node_01

cen_node_02

[ubuntu]

ubu_node_01

ubu_node_02 ansible_user=admin1 ansible_pass=Pass@123

We are using ansible_pass for our learning purpose. In production,

never save your password as clear text. We will fix it in the later

chapters. If you remember, we left out ubu_node_02 node without

password-less login, we are fixing that here in inventory by

providing SSH credentials.

Single VM as control and managed node

In case you have a low specs laptop and you can’t have multiple

VMs, a single Linux VM can be used as the Ansible control and

managed node. If you are using a single VM, then the following

is the inventory file that you need:

Localhost ansible_connection=localhost

Variable explanation

The following variable names are self-explanatory which will help

us in writing complicated scripts in the later chapters:

The name of the host to connect to, if it’s different from the alias

you wish to give to it.

The connection port number, if not the default for SSH).

The user’s name to use when connecting to the host.

The password to use to authenticate to the host.

Equivalent to ansible_sudo or allows to force privilege escalation.

After using the preceding sample inventory in the current directory,

we will get the following output:

ansible@master:~/ansible$ ansible -i inventory centos -m ping

cen_node_01 | SUCCESS => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"changed": false,

"ping": "pong"

}

cen_node_02 | SUCCESS => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"changed": false,

"ping": "pong"

}

ansible@master:~/ansible$

Ansible configuration file

When the Ansible command or playbook is executed, it looks for

the Ansible.cfg file, which has the Ansible related parameters

configured.

Ansible looks for the configuration file in the following order:

Priority variable if set).

Priority the current directory).

Priority the home directory).

Priority /etc/ansible/ansible.cfg (default location)

Ansible will process the preceding list and use the first file found,

and all the others will be ignored. Ansible creates a default

configuration file at the location when Ansible is installed.

The recommendation is to keep a separate configuration file for

each script or a group of scripts, otherwise Ansible will use the

default configuration file. Later, if someone modified the parameter

of the default configuration file, all your scripts will be affected

and it will become a huge troubleshooting task.

We will discuss some basic parameters in the following section;

the other parameters will be covered in the later chapters:

Inventory= We can specify the inventory file directly from the

configuration file, so we don’t have to provide it during the script

execution.

Forks = This represents the number of parallel connections that

needs to be established. By default, its value is If we increase this

value, the script processing time will be enhanced. However, it will

generate more load on the Ansible server and network.

sudo_user = Here we can change the sudo user to some other

user with the admin rights, since the root user is not normally

used for the day-to-day tasks.

gathering = This option is used to collect more information about

the host machine. This is a very useful feature; we will discuss it

further in the later chapters.

timeout = This is for the SSH timeout in seconds; for lab setup

10 seconds is OK, but for production, you must change this to

30 seconds or even 60 seconds. Otherwise, you might get the

timeout messages on some hosts, which have high utilization.

Ansible modules

In this section, we will look at some ansible modules in a bit

more detail. This is required, so that we can practice developing

some more meaningful playbooks. Ansible modules are categorized

into various groups based on their functionality. As I said earlier,

there are hundreds of Ansible modules available. They are

categorized into the following list:

Cloud modules

Clustering modules

Command modules

Crypto modules

Database modules

File modules

Identity modules

Inventory modules

Messaging modules

Monitoring modules

Net tools modules

Network modules

Notification modules

Packaging modules

Remote management modules

Source control modules

Storage modules

System modules

Utilities modules

Web infrastructure modules

Windows modules

Let’s discuss some important Ansible categorization of modules,

which are as follows:

System System modules are actions to be performed at a system

level, such as modifying the users and groups on the system,

modifying IP tables, and firewall configurations, working with

logical volume groups, mounting operations, or working with

services. For example, starting, stopping, or restarting services in a

system.

Command Command modules are used to execute the commands

or scripts on a host. These could be simple commands using the

command module or an interactive execution. You could also run

a script on the host using the script module.

File File modules help in working with files. For example, using

the ACL module to set and retrieve the ACL information on files,

use the archive and unarchive modules to compress and unpack

files, and use find to search and replace the modules to modify

the contents of an existing file.

Database Database modules help in working with the databases,

such as MongoDB, MSSQL, MySQL, or PostgreSQL, to add or

remove the databases or modify database configurations, and so

on.

Cloud Cloud modules have a vast collection of modules for the

various cloud providers like Amazon, Azure, Docker, Google,

OpenStack, and VMware being just a few of them. There are a

number of modules available for each of these that allow you to

perform various tasks such as creating and destroying instances,

performing configuration changes, networking and security and

managing containers, data centers, clusters, social networking,

VSAN, and a lot more.

Windows Windows modules will help you use Ansible in a

Windows environment. Some of them are Win_copy to copy files,

and Win_command to execute the command on the Windows

machine. And there are a bunch of other modules available to

work with the files on Windows. Create an IIS website, install a

software using the MSI installer, making changes to the registry

using Regedit, and manage services and users in Windows. These

are just a few modules in a few categories.

There are a lot more and a comprehensive list can be found at

docs.ansible.com along with detailed instructions on each of them.

Let's look at a few of these modules in detail to understand how

you can use them.

Command

This is default module, if you don’t specifically mention any

module, this module will be used. It will work only when you

have Python installed on manage nodes. The command module

takes the command name followed by a list of space-delimited

arguments. These arguments are commands which will be

executed on all the nodes. The command(s) will not be processed

through the shell, so variables like $HOME and operations like

and & will not work.

Shell

This will work only when you have Python installed on manage

nodes. It is almost exactly like the command module but runs the

command through a shell on the remote node. Therefore,

variables like $HOME and operations like and & will work.

RAW

This module is doing the same thing as Shell and command

modules, but the key point is, it doesn’t require Python on the

remote machine. This is useful and should only be done in a few

cases. A common case is installing Python on a system without

Python installed by default. Another is managing any devices such

as routers and switches that do not have any Python installed.

Arguments given to RAW are run directly through the configured

remote shell.

PING

This is a trivial test module; this module always returns ping on

successful contact. It does not make sense in playbooks, but it is

useful from to verify the ability to login and that a usable Python

is configured. This is NOT ICMP ping, this is just a trivial test

Ansible module that requires Python on the remote-node.

Copy

The copy module copies a file from the local or remote machine

to a location on the remote machine.

File

This sets attributes of files, symlinks, or directories. Alternatively, it

is used to remove files, symlinks, or directories.

YUM/APT

This installs, upgrade, downgrades, removes, and lists packages,

and groups with the respective Linux package manager.

This is just the tip of the iceberg; we have thousands of such

modules available for specific purpose like cloud, system, storage,

monitoring, database, and network administration. We will cover

them in the later chapters.

Basic understanding of YAML

This is the last theoretical concept that we have in Ansible. I am

planning to cover all the theory in this chapter. In the following

chapters, it will be all hands-on. Understating YAML is essential in

writing the Ansible playbooks. Ansible playbooks are the

text/configuration files that are written in a particular format called

YAML. Therefore, we will spend some time to understand the

YAML syntax before jumping to the Ansible playbooks.

All the YAML files can optionally begin with --- and end with This

is part of the YAML format and indicates the start and end of a

document.

The following are the YAML components:

The following is the YAML sample list format:

A list of fruits

- Apple

- Orange

- Banana

- Mango

…

The following is the YAML sample dictionary format:

An employee record

martin:

name: Waqas Irtaza

job: Engineer

skill: Automation

A dictionary is represented in a simple key: value form (the colon

must be followed by a space).

Proper spacing is essential, otherwise we will get a syntax error

depicted as follows:

Correct Syntax Incorrect Syntax

An employee record # An employee record

User: User:

name: Waqas Irtaza name: Waqas Irtaza

job: Engineer job: Engineer

skill: Automation skill: Automation

A dictionary is unordered and a list is ordered; see the following

example to understand the main difference between lists and

directories.

Dictionary The following example shows the YAML dictionary

comparison:

An employee record # An employee record

user: user:

name: Waqas Irtaza skill: Automation

job: Engineer = name: Waqas Irtaza

skill: Automation job: Engineer

List The following example shows the YAML list comparison:/p>

--- ---

A list of fruits # A list of fruits

- Apple - Apple

- Orange = - Banana

- Banana - Orange

- Mango - Mango

… …

More complicated data structures are possible, such as lists of

dictionaries, dictionaries whose values are lists or a mix of both.

The following is an example to understand the complicated data

structures:

Employee records

- Waqas:

name: Waqas Irtaza

job: Engineer

skills:

- python

- Ansible

- John:

name: John Smith

job: Developer

skills:

- lisp

- fortran

Dictionaries and lists can also be represented in an abbreviated

form:

#Directory

user: {name: Waqas Irtaza, job: Engineer, skill: Ansible}

#List/Array

['Apple', 'Orange', 'banana', 'Mango']

For strings in YAML, we don’t have to put them in double

quotes, unless they have special characters.

That’s all you really need to know about YAML to start writing the

Ansible playbooks. We will be using this YAML format in the

following chapters.

Conclusion

In this chapter, we covered the theory of Ansible. Ansible is the

simplest way to automate the IT infrastructure. It uses the SSH

port for management, which is a default industry standard for the

IT infrastructure administration. Zero configuration on managed

nodes is a unique feature in Ansible.

We discussed the Ansible components and how they come

together. We also discussed the option to install Ansible, configure

the managed nodes, and test the installation. Ansible provides a

diverse range of options to configure the managed nodes and we

discussed all of them in detail. An Ansible inventory is a file,

which stores the host or managed nodes in details. The Ansible

modules are the code, written for specific tasks and infrastructure.

Ansible already has thousands of modules available and ready to

be used. The Ansible modules are written for specific networking

devices, cloud platforms, and almost all the major aspects of IT.

The Ansible scripts are written in YAML, which is a human-

readable data-serialization language. It is commonly used for the

configuration files. The important components of YAML are list

and dictionary. Dictionary is unordered and list is ordered.

In the next chapter, we will understand and practice the Ansible

ad-hoc mode and write useful automation scripts for the day-to-

day activities. We will cover the basics of the Ansible playbooks

and see the different programming options like the conditional

statements, variables, loops, and much more.

Multiple choice questions

What is Ansible?

An automation platform.

A programming language.

A GUI interface for the programming language interpreter.

A fictional device.

In which language is the Ansible engine written?

Ruby.

DSL.

Python.

YAML.

What are the advantages of using Ansible?

Agentless.

Very low overhead.

Good performance.

All of the above.

What are the Ansible use cases?

Security and compliance policy integration.

Automated workflow for continuous delivery.

Simplified orchestration.

App deployment.

Configuration management.

Streamlined provisioning.

All of the above.

Which default protocol does Ansible use for host management?

SMTP.

HTTP.

Telnet.

SSH.

What is the name of the Ansible configuration file?

host.

inventory.

ansible.cfg.

ansible_config.cfg.

What is the priority sequence for the Ansible configuration file?

ANSIBLE_CONFIG environmental variable.

ansible.cfg in current directory.

ansible.cfg user home directory.

/etc/ansible/ansible.cfg.

Options are:

1234

3124

1324

4321

None of the above

Multiple choice questions answers

A

C

D

G

D

C

C

Points to remember

Ansible itself is written in Python, however, the Ansible playbooks

are written in YAML.

By default, Ansible uses SSH for managing the hosts’ machines.

Location and priority of the Ansible configuration file is extremely

important.

Command, shell, and raw are all the modules used to execute

commands on the remote hosts; however, command doesn’t

support the environmental variables, and raw is used when the

remote machine doesn’t have Python installed.

Key terms

The following are the key terms that we have used and defined in

this chapter:

Ansible control A server, where Ansible is installed. It must be a

Linux machine.

Ansible manage Servers/devices managed through Ansible.

Ansible List of servers/devices.

Ansible configuration Modifying Ansible default parameters.

Ansible Pre-build scripts for specific tasks.

CHAPTER 2

Ansible Basics

Before we start working with Ansible, let’s recap what we learned

in the previous chapter. We discussed what makes Ansible a

popular automation tool. We also discussed the Ansible

infrastructure requirements and components. Moreover, Ansible

installation and YAML syntax was discussed the in detail.

In this chapter, we will introduce the real-world usage of Ansible.

We will discuss the Ansible nodes and when to use them. We will

take the real-world tasks and automate them with Ansible. After

going through this chapter, you will be able to automate the basic

repetitive tasks with Ansible.

Structure

In this chapter, we will cover the following topics:

Ansible ad-hoc mode

Examples for ad-hoc mode

Ansible playbook

Ansible variables

Conditional statements in Ansible

Loops in Ansible

Ansible handler

Ansible Vault

Objective

After studying this chapter, you should be able to do the

following:

Use Ansible ad-hoc mode for automation.

Write Ansible playbooks for automation.

Understand Ansible user-defined and built-in variables and

conditional statements.

Understand and use different types of loops in Ansible.

Understand and use Ansible handler.

Understand and use Ansible Vault.

Ansible ad-hoc mode

The Ansible ad-hoc mode is a command-line tool to automate

single tasks. The Ansible ad-hoc mode is quick and easy, but it is

not reusable, since each time you have to provide the desired

parameter. We can automate thousands of servers with just a

single ad-hoc command, which demonstrates the power of Ansible.

The practical use of Ansible ad-hoc mode includes managing

users, file copying, rebooting servers, installing or removing

packages, and many more. All the Ansible modules can be used

in the ad-hoc mode, however the default module is command.

The following is a sample ad-hoc command:

$ ansible [pattern] -i inventory-file -m [module] -a "[module

options]"

Let us discuss all the inputs for a better understanding.

Pattern

Pattern helps us in selecting the specific hosts or groups from the

inventory file. The following table lists the common patterns for

targeting the inventory hosts and groups:

groups:

groups: groups: groups: groups: groups: groups: groups: groups:

groups:

groups: groups: groups: groups: groups: groups: groups: groups:

groups: groups: groups: groups: groups: groups: groups: groups:

groups:

Table 2.1: Ansible Patterns

Once you know the basic patterns, you can combine them in any

order. The following is an example to demonstrate it:

webservers:dbservers:&staging:!phoenix

We use the wildcard patterns to locate the host from the

inventory file. All the hosts that match the wildcard will be

selected. The Wildcard pattern can be used for IP or FQDNs. The

following example demonstrates the power of using wildcards:

192.168.*

*.example.com

*.com

We can also mix the wildcard patterns and groups at the same

time. The following example will demonstrate it:

webservers:dbservers:&staging:!phoenix

At this point, one thing should be clear, and that is, if the

pattern is not matching any host in the inventory file, the

following error will be displayed:

[WARNING]: No inventory was parsed, only implicit localhost is

available

[WARNING]: Could not match supplied host pattern, ignoring:

*.not_in_inventory.com

Inventory

We have spent a decent amount of time in understanding all

about the Ansible inventory in the previous chapter. The -i option

is used to assign an inventory file for the Ansible ad-hoc mode. If

we have defined the inventory file path in the Ansible

configuration file, then we don’t have to mention it here.

Modules

We have already discussed about modules in the previous chapter.

For the Ansible ad-hoc mode, the -m option is used to provide

the module name and –a is used to provide the module

arguments. We will be following a lot of examples which will

clarify this point.

Examples for ad-hoc mode

In this section, we will take several useful practical examples to

understand how useful the ad-hoc mode is. Most of the examples

in this chapter can be used in any production environment. Let’s

take a look at these examples.

Check host status

We have already used the ping module in the previous chapter.

When this module is executed and host is up, we get the PONG

message in the output. The following is the output for the ping

module:

ansible@master:~/ansible/Chapter-02$ ansible cen_node_01 -i

inventory -m ping

cen_node_01 | SUCCESS => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"changed": false,

"ping": "pong"

}

ansible@master:~/ansible/Chapter-02$

This is a quick check to see if the host is up before executing

the other commands.

Rebooting servers

As we discussed earlier, the -m option is for selecting the module

and -a is for the module parameter. However, if we don’t

specifically mention any module, Ansible will use the COMMAND

module. At this point, we have the Ansible setup ready and the

inventory file has managed host details. To reboot all the servers

in a specific group, for example we will be using the following

example:

$ ansible centos -i inventory -a "/sbin/reboot"

As per the Ansible configuration file, by default, Ansible has five

parallel connections. Which means, if we reboot ten servers,

Ansible will reboot five servers and then the other five servers.

This is a configurable parameter, we can either change it in the

configuration file or provide it via the command-line. For example,

if we want to reboot 20 servers in parallel, the following

command will be used:

$ ansible centos -i inventory -a "/sbin/reboot" -f 20

Ansible will by default to run from current user account. To

connect from a different user. For example, current user doesn’t

have sudo access, we can use the following command:

$ ansible centos -i inventory -a "/sbin/reboot" -f 10 -u username

As we know, only the administrator has the rights to reboot any

particular server, therefore, we will be requiring privilege escalation

to reboot the servers. For privilege escalation, the following

commands will be used:

$ ansible centos -i inventory -a "/sbin/reboot" -f 10 -u username --

become [--ask-become-pass]

If you add --ask-become-pass or Ansible prompts you for the

password to use for privilege escalation.

Working with host environmental variable

So far, all our examples have used the default command module

which doesn’t support the environment variable. We already

discussed this in Chapter 1: Up and Running with Here we have

an example to elaborate it better. To use a different module, pass

-m for the module name. For example, to use the shell module,

the following command will be used:

$ ansible centos -i inventory -m shell -a 'echo $HOME'

cen_node_01 | CHANGED | rc=0 >>

/home/ansible

cen_node_02 | CHANGED | rc=0 >>

/home/admin1

ansible@master:~/ansible/Chapter-02$

Managing files

Managing files is also a regular process, which most system

administrators have to go through on a daily basis. Ansible does

it beautifully, for example, if you have a file and you want to copy

it on several servers, a single Ansible ad-hoc command will do

the job. The following is an example which copies a file to all the

[centos] machines:

$ ansible centos -i inventory -m copy -a "src=/etc/hosts

dest=/tmp/hosts"

Can you feel the power of Ansible? Suppose we have to copy some

files on thousands of servers, a single command can do it in

Ansible.

The file module allows changing the ownership and permissions

on files. Not only can we copy the file, we can also change the

permission and the owner details on the file. This is very

important. Suppose you are automating the file copy for some

application, and the application users don’t have the administrative

access, if we just copy the file, file owner will be the automation

user, and the application will not be able to use the file. However,

we can change the file permission and automate the complete

process. The following commands will be used to change

permission and owner details:

$ ansible centos -i inventory -m copy -a "src=/etc/hosts

dest=/tmp/hosts mode=622"

$ ansible centos -i inventory -m copy -a "src=/etc/hosts

dest=/tmp/hosts mode=622 owner=app_user group=app_user”

File module is not yet over; a file module can also create

directories, similar to

$ ansible centos -i inventory -m copy -a "src=/var/application

dest=/tmp/application mode=755 owner=app_user group=mapp_user

state=directory "

We can also recursively delete the files from the Ansible managed

nodes by using the following command:

$ ansible centos -i inventory -m copy -a "src=/tmp/application

state=absent"

Managing packages

Installing or uninstalling packages can also be done with the

Ansible ad-hoc. Ansible has several package management modules

which can be used for managing packages. For the Debian and

Red Hat operating systems, yum and apt are the most famous

modules. The following is the syntax to install using both the

modules:

$ ansible centos -m yum -a "name=httpd state=present"

$ ansible ubuntu -m apt -a "name=apache2 state=present"

The inputs are the same for both the yum and the apt modules.

Therefore, we will only use one of them in the following

examples.

We can also force Ansible to only install a specific version by

using the following command:

$ ansible centos -m yum -a "name= httpd-2.2.26 state=present"

To ensure that a latest version of package is installed, we can use

the following command:

$ ansible centos -m yum -a "name=httpd state=latest"

We can also uninstall a package or ensure that a specific package

is not installed on the Ansible managed nodes. The following

command will do it:

$ ansible centos -m yum -a "name=httpd state=absent"

Ansible has modules for almost all the package managers. If you

are using some legacy or outdated system whose Ansible module

is not available, then the Ansible command module can be used

to install the packages. Moreover, if you are good with Python,

you can write your own package manager.

Managing users and groups

The Ansible ad-hoc mode is also useful to create, remove, and

manage the user accounts. The following ad-hoc command will be

used to create the user:

$ ansible centos -i inventory -m user -a "name=alex

password=password here>"

Similarly, we can remove a user by using the following command:

$ ansible centos -i inventory -m user -a "name=alex state=absent"

Managing services

We can use the service module to start and stop the services on

the Ansible managed nodes. The following examples will start,

stop, and restart the HTTP service on the CentOS machines

respectively:

$ ansible centos -i inventory -m user -a "name=httpd

state=started"

$ ansible centos -i inventory -m user -a "name=httpd

state=stopped"

$ ansible centos -i inventory -m user -a "name=httpd

state=restarted"

Gathering facts

Fact gathering is another useful feature of Ansible. It collects the

managed nodes’ information and stores them in variables. This

variable can be used to write flexible and complex automation

task. The following simple command can be used to get all the

variables on managed nodes:

$ ansible centos -i inventory -m setup

The preceding command will provide a lot of information, but this

information will be on Ansible console, which is not the right

place to go through such a large amount of data. So, we can use

the following command to store all the facts in a file:

$ ansible centos -i inventory -m setup --tree /tmp/facts

The beauty of the command is that it will create different files for

each managed host, name it with the hostname, and save it on

the provided directory.

The preceding command is helpful to understand the overall

variables, but when you are looking for specific variables, for

example to display only facts regarding memory, we can use the

following command:

$ ansible centos -i inventory -m setup -a 'filter=ansible_*_mb'

To display only the facts about certain interfaces, use the following

command:

$ ansible centos -i inventory -m setup -a 'filter=ansible_eth[0-2]'

We will be discussing the facts later in this chapter and use them

in writing playbooks. At this point, you should get an idea about

the Ansible ad-hoc mode.

Ansible playbooks

The Ansible ad-hoc mode is great for doing individual tasks;

however, people mostly prefer the playbook because it allows them

to execute multiples task, use variables, conditional statements,

and much more. Normally, when we automate some activity, it’s

not a single task but a series of tasks. The Ansible playbook

allows us to organise all those tasks in an easy-to-understand

language called YAML. We have already seen the basics of Ansible

in the previous chapter. Let’s take a very simple task and try to

understand how playbooks are written. Let’s execute two Linux

commands -a and in the following example.

The following is the example for the Ansible playbook:

- hosts: centos

tasks:

- name: Execute uname

shell: uname -a>/tmp/ansible_output.txt

- name: Execute Whoami

shell: whoami >>/tmp/ansible_output.txt

Explanations

Let’s add the line number and understand how playbooks are

written. Let me repeat again, the number of spaces are extremely

important in the YAML format:

1 ---

2

3 -_hosts:_centos

4 __tasks:

5 ___-_name:_Execute a uname command on Linux

6 _____shell:_uname -a>/tmp/ansible_output.txt

7

8 - name: Execute Whoami Command on Linux

9 shell: whoami >>/tmp/ansible_output.txt

Important points

The following are the important points when writing the Ansible

playbooks; go through them a couple of times until you know

them all:

Playbook starts with three hyphens

Line 3 has one space after hyphen and one space after colon

Line 4 has two spaces before tasks.

Line 5 has three spaces before hyphen one space after hyphen

and one space after colon

Line 6 has five spaces before the module name and one space

after colon

In Line we can see as many empty lines as we want to organize

our playbooks.

Lines 8 and 9 are a repetition of Lines 5 and

Understanding the spacing in YAML is extremely important. Don’t

worry, after writing two or three playbooks, you will get used to it.

Now let’s understand the following output:

ansible@master:~/ansible/Chapter-02$ ansible-playbook my_first_pb

-i inventory

PLAY [centos]

TASK [Gathering Facts]

ok: [cen_node_02]

ok: [cen_node_01]

TASK [Execute uname]

changed: [cen_node_01]

changed: [cen_node_02]

TASK [Execute Whoami]

**

changed: [cen_node_01]

changed: [cen_node_02]

PLAY RECAP

cen_node_01 :

ok=3 changed=2 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

cen_node_02 :

ok=3 changed=2 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

ansible@master:~/ansible/Chapter-02$ ssh cen_node_01

Last login: Tue Sep 15 17:53:01 2020 from master

[ansible@cent_node_01 ~]$ cat /tmp/ansible_output.txt

Linux cent_node_01 3.10.0-1127.8.2.el7.x86_64 #1 SMP Tue May 12

16:57:42 UTC 2020 x86_64 GNU/Linux

ansible

[ansible@cent_node_01 ~]$ exit

Important points

The following are the important points to note in the output:

Playbooks are executed with the command ansible-playbook

my_first_pb -i

Gathering facts is an important point. We will discuss it later in

detail.

Whatever name we mention, the playbook will show up in front of

In the final commands, we verified that the commands are

executed properly.

Ansible variables

The variable concept for Ansible is the same as in any other

programming language, which is a symbolic name of a memory

location where the data is stored. In Ansible, we have two kinds

of variables. Let’s understand both of the following variables:

User defined variables

Built-in variables

User defined variables

Let’s understand the user defined variables with an example. We

will create two variables and print them with the echo command.

In Ansible, variables are called by double curly brackets

Playbook

The following is an example playbook:

- hosts: centos

vars:

- name: Waqas Irtaza

- address: Dubai UAE

tasks:

- name: Print variables

shell: echo "My name is {{name}} and I am located in

{{address}}">/tmp/ansible-output.txt

Output

The following is the output after running the playbook:

ansible@master:~/ansible/Chapter-02$ ssh cen_node_01

Last login: Tue Sep 15 19:12:29 2020 from master

[ansible@cent_node_01 ~]$ cat /tmp/ansible-output.txt

My name is Waqas Irtaza and I am located in Dubai UAE

[ansible@cent_node_01 ~]$

ansible@master:~/ansible/Chapter-02$ ssh cen_node_02

Last login: Tue Sep 15 16:51:53 2020 from master

[ansible@cent_node_02 ~]$ cat /tmp/ansible-output.txt

My name is Waqas Irtaza and I am located in Dubai UAE

[ansible@cent_node_02 ~]$

This is just a basic example to walk you through variables. We

will be using them quite frequently.

Built-in variables

If you remember, we skipped Gathering Facts from the first Ansible

playbook output. Let’s discuss it here. Before Ansible executes a

command on hosts, it gathers a lot of useful information about

the host and saves it in the built-in variables. We can use these

variables in our playbook and make it more diverse.

To get all the built-in variables list, we can use the following ad-

hoc command, which we have already discussed in the ad-hoc

mode section:

ansible -i inventory cen_node_01 -m setup

The output is huge, so I am not pasting it here. We can use the

filters to get specific information. For example, if we want to know

the host operating system, we will use the following command:

ansible -i inventory cen_node_01 -m setup -a "filter=*family*"

Moreover, if we need the IP details, we will be using the following

filter:

ansible -i inventory cen_node_01 -m setup -a "filter=*ip*"

I hope you got the point. Similarly, we can get a lot of important

information about the host, like the following:

CPU type

Operating system

RAM

IP address

CPU cores

Interfaces

We can call these variables in our playbook and make intelligent

decision. For example, if we are using the yum module in our

playbook, we know that the yum command doesn’t work with the

Ubuntu machines, so we can write a conditional statement, which

will check the built-in variable for the operating system, and then

smartly execute the commands on the centos machines only. We

will see this example in the conditional statements.

The built-in variables are used in the playbook in the same

manner as the user defined variables, that is, I recommend that

you use the preceding setup command and play with the different

variables.

Ansible output

Ansible has a module specifically for the output. The module

name is and it helps us register the output in a variable. Once

the output is in a variable, we can display the output simply or

modify it, if required. The output is formatted in JSON, which is

slightly different from YAML.

The following is the playbook:

- hosts: centos

tasks:

- name: Execute whoami Command

shell: whoami

register: whoami_output

- name: Display the output

debug: var=whoami_output.stdout_lines

The following is the output:

TASK [Display the output]

ok: [cen_node_02] => {

"whoami_output.stdout_lines": [

"admin1"

]

}

ok: [cen_node_01] => {

"whoami_output.stdout_lines": [

"ansible"

]

}

The output variable whoami_output has the JSON output, but if

you look closely, we are taking stdout_lines which has the desired

output. We can also take stderr_lines if we need the error

message.

The debug module prints the statements during execution and can

be useful for debugging the variables or expressions without

necessarily halting the playbook. It has the following three

parameters:

The customized message that is printed. Moreover, variable

required

When using the option, a variable name is written without

A number that controls when the debug is run; if you set to it

will only run debug when -vvv or above.

For example, if we have to write the preceding output with the

following playbook can achieve it:

- hosts: centos

tasks:

- name: Execute whoami Command

shell: whoami

register: whoami_output

- name: Display the output

debug: msg={{whoami_output.stdout_lines}}

Conditional statements in Ansible

Conditional statements in Ansible looks quite different. However,

functionality wise, it is the same as in any other programming

language. The first part of conditional statements is just a normal

task, the second part is a condition; the task will only execute

when the condition is true. Moreover, we use the special word

When to check the condition. The following is a sample of the

conditional statement:

Task:

- Name: Any description (Optional)

Module: module parameters

When: Condition

Let’s understand it with a practical example.

Playbook

The following is the Ansible playbook:

- hosts: all

become: yes

tasks:

#Below script will install apache2 on Debian and ignore centos

hosts

- name: Install apache2 on Ubuntu machines

apt: name=apache2 state=latest

when: ansible_os_family == "Debian"

register: apt_output

- name: Display the console output

debug: var=apt_output

#Below script will install httpd on centos and ignore ubuntu hosts

- name: Install httpd on centos machines

yum: name=httpd state=latest

when: ansible_os_family == "RedHat"

register: yum_output

- name: Display the console output

debug: var=yum_output

We used it will allow us to become the root user since the

installation requires sudo access. Moreover, we can also check

multiple conditions as stated in the following example:

tasks:

- name: "shut down CentOS 6 systems"

command: /sbin/shutdown -t now

when:

- ansible_facts['distribution'] == "CentOS"

- ansible_facts['distribution_major_version'] == "6"

Loops in Ansible

The concept of loops is also the same in Ansible as in any other

programming language.

Loops are used to minimize the repetitive code and repeat it,

based on the predefined conditions or logic. Any network or

system administrative task, when executed for N number of

servers, can be simplified with the Ansible loops. In Ansible, we

have two options for creating loops: loop and

with_list

with_items

with_indexed_items

with_flattened

with_together

with_dict

with_sequence

with_subelements

with_nested/with_cartesian

with_random_choice

The loop function was added in Ansible 2.5 and the following

versions, although the Ansible documentation recommends loops

and there is a document available in the official site, which has

examples of replacing with_ with loops. However, I found with_ is

extremely simple and I will be focusing on it for looping. We will

take some examples which will give you an idea on how these

loops work.

Install listed software on Ubuntu machines

The following is the playbook which will install the list of software

on the Ubuntu machines:

- hosts: ubuntu

become: yes

tasks:

- name: Install below listed packages on ubuntu machines

apt: name={{item}} state=latest

with_items:

- nano

- vim

- python

- wget

Display content of two files

The following playbook will display the content of two files:

- hosts: ubuntu

become: yes

tasks:

- name: Display content of files

debug: msg="{{item}}"

with_file:

- ip.txt

- host.txt

Print a sequence from 0 to 10

The following playbook will print the sequence:

- hosts: ubuntu

become: yes

tasks:

- name: Display sequence from 0 to 10

debug: msg="{{item}}"

with_sequence: start=0 end=10

Let’s take the following example to compare loop and

with_sequence

- hosts: ubuntu

tasks:

- name: with sequence

debug: msg="{{item}}"

with_sequence: start=0 end=4

loop

- hosts: ubuntu

tasks:

- name: with_sequence -> loop

debug: msg= "{{item}}"

loop: "{{range(0, 5)|list}}"

Both the preceding loops do the same thing. An important point

to note is that when we are using a range command in loops,

the upper limit should be one more than the repetition and the

special word list is used to convert the integers to list, which is

required for loop.

Ansible handler

Handlers are just like the normal tasks in an Ansible playbook,

but it will run when called by another task that contains a notify

directive. A Handler is useful for the secondary actions that might

be required after running a task, such as starting a service after

the installation or configuration change. The following example will

show how the Ansible handlers are used:

- hosts: ubu_node_01

become: true

tasks:

- name: Install Package

apt: name=apache2 state=present

notify:

- Start apache2

handlers:

- name: Start apache2

service: name=apache2 state=started

Let’s see the following sample to understand the key features of

handlers:

Tasks

- Task1

Handler_name

- Task2

- Task3

Handler_name

- Task4

Handler

- Handler_name

Suppose we have four tasks, out of them, two are calling a

handler as depicted in the sample. However, handler will only run

once. This is the key feature which makes it different from a

standard task.

Moreover, a handler will only be executed if the task made a

change on the node. Otherwise, the handler will not run. In the

preceding example, the handler will only run if Task1 or Task3 has

made a change on the nodes. It is a very useful feature; suppose

we are installing apache2 on a host and then restarting the

service – if a host already has apache2 installed, restarting the

service might affect the current service.

Ansible error handling

Ansible normally has defaults settings which make sure to check

the return codes of the commands and modules; if Ansible

playbook fails, Ansible exits the playbook with an error. Ansible

provides several ways to change this default behaviour; let’s

discuss them in the following section.

Ignoring failed commands

Generally, the Ansible behaviour is to stop executing any more

steps or commands on a host that has a task failed, which

makes sense. For example, we have written a playbook which

installs Apache and then starts the service. If the installation fails,

it does not make any sense to run a command, which will try to

start the service. In this case, both the commands are dependent.

However, if the commands are independent and we want to keep

going, then we have to add the following highlighted command in

our playbook, which will change the Ansible default behaviour and

execute all the tasks for the particular host, even if some tasks

get failed:

- name: If fails, this command will not be counted as a failure

command: /bin/false

ignore_errors: yes

Resetting unreachable hosts

The default Ansible behavior is to set the host unreachable; if the

host did not respond on time, and the Ansible timeout is

breached – which can happen because of several issues, for

example network or server utilization was high and host could not

respond on time – then Ansible will remove the host from the

active host.

The Ansible tasks will be executed on the active host only; in case

we suspect there will be a false positive for the unreachable

hosts, and we want to change the Ansible behavior to auto

recover the unreachable host, then we have to use

clear_host_errors in playbook.

Controlling what defines failure

In Ansible, we have the options to set a criterion which defines

what failure means in each playbook task using the keyword A list

of multiple failed_when conditions are joined like a conditional

statement, meaning the task only fails when all the conditions are

met.

Ansible Vault

The Ansible Vault encrypts the variables and files, so we can

protect the sensitive content, such as passwords or keys, rather

than leaving it visible as plaintext in playbooks. To use the Ansible

Vault, we need one or more passwords to encrypt and decrypt the

content.

Since it is common to store the Ansible configurations in the

version control, we need a way to store the secrets securely.

The Ansible Vault is the answer to this. Ansible Vault can encrypt

anything inside a YAML file, using a password of your choice. A

typical use of the Ansible Vault is to encrypt the variable files or

playbooks. Vault can encrypt any YAML file. Let's see how to use

the Ansible Vault.

To create an encrypted file, the following command will be used:

$ ansible-vault create learn_ansible.yaml

New Vault password:

Confirm New Vault password:

$

Once we enter the command, it will prompt us for a password.

This password is very important, it will be required to create,

modify, or run this playbook. Once we enter the password, it will

open a VI editor file, in which we can write normal Ansible plays,

as shown in the following playbook:

- hosts: all

become: yes

vars:

- ansible_sudo_pass: Pass321

tasks:

- name: Install apache2 on Ubuntu machines

apt: name=apache2 state=latest

register: apt_output

- name: Display the console output

debug: var=apt_output

Once the playbook is written as per your requirement, just exit

out of the VI editor. Let’s open the newly created file and see the

content, as shown in the following example:

$ cat learn_ansible.yaml

$ANSIBLE_VAULT;1.1;AES256

3462353031626365653236623034353066346639643638613238646562633

3653865353363323032353534316434366566323634613035313733393763653

9620a663763346132303537643564316431633063313064373565643764356

4393833353465623339346665313863633135633231303831353862326530313

63566320a643163663239306534323530616231613333343534373166363939

3334386666373737623963656334663434363266666461306238316238373

93930383335613162316163343937653664396636303765323433636332663

665353133646261663362653833393036363031313166666162373235616236

3161646133633661326530346261343739346338396538336131323638313531

323766366333653563363036333762326534333231376435646365323764323

935643235396462656366623461656165336234363131363131303133663032

326431353739343133356537383833

636232383963343338376464636538613131386436393434616164316461373

73765653364396661666334613736316635323235373034666532636537636

16564666266666231313838663539666663383237383737353561363961316

3633763623834643534653339356536376664343566656432653439346266

636665343131353135666330343961663361616361623439623038393232323

66366333433386237666262393332373530363164383430323566663066613

765653061373736346439353432666637376261623936343133373165333161

35313431376365343632663439646336386638653264643230313264633937

356538396361636261366238303738333564323038316161376232393833356

63661376531656561333635336137303532356131353534633138613736653138

34393537633831623237626438653061666337613964633930383739636536

36656562343035613837336333363563

643938383962613935613064336565376331

$

Now the playbook is encrypted; the following are some useful

commands that work with this encrypted file.

Modify the playbook

The following command will let us edit the encrypted playbook:

$ ansible-vault edit learn_ansible.yaml

Vault password:

$

Run the playbook

The following command will let us run the encrypted playbook:

$ ansible-playbook learn_ansible.yaml -i inventory --ask-vault-pass

Vault password:

$

There is a catch; we have to type the password each time we are

executing the playbook, which is not ideal. There is another option

to run the playbook without having to type the password, but you

have to save the vault password in a clear text file, which is still

a security risk, since anyone read the file, and also modify and

run your playbook. We can give that file read-only permission to

the automation user, so that no one else can read the password.

I know it’s not ideal but it can do the job easily. The following is

the command to run the playbooks without requiring the

password:

$ ansible-playbook learn_ansible.yaml -i inventory --vault-password-

file password.txt

This is just the basics for Ansible Vault. You will see the benefits

of it when we discuss the roles and the other advanced topics in

the next chapter.

Conclusion

In this chapter, we discussed the Ansible ad-hoc and Ansible

playbooks. The Ad-hoc commands can run individually to perform

quick functions. These commands are not required to be used

frequently; for example, if we have to reboot the list of servers,

we will be using the ad-hoc commands, since in production, we

rarely reboot servers. The biggest benefit of the ad-hoc command

is its simplicity and power which it provides the user. We have

discussed a couple of use cases for the ad-hoc mode.

The Ansible playbooks offer a repeatable, re-usable, simple

configuration management, and multi-machine deployment system,

one that is well-suited to deploying complex applications. Ansible

plays are written in YAML. YAML stands for Yet Another Markup

YAML allows Ansible to use the conditional statements, loops, and

many other programmable features which simplify the automation

process.

In the next chapter, we will focus on the advanced concepts of

Ansible and the best practices for writing the Ansible playbooks.

Multiple choice questions

Can we run the Ansible ad-hoc command without providing an

inventory file in the command-line?

No, we have to provide the inventory file.

Yes, if we provide the inventory file path in the ansible.cfg file,

then we don’t have to provide the inventory file.

Can I run an Ansible ad-hoc command without any module?

No, Ansible must need a module to execute the command.

Yes, if no module is mentioned, Ansible uses the default module,

named

Are spaces important to consider when writing the YAML

playbooks?

Yes.

No.

Are empty lines important to consider when writing YAML

playbooks?

Yes.

No.

Which Ansible module supports the managed host environmental

variables?

Command.

Shell.

Raw.

Ping.

Which Ansible module does not require Python to be installed on

managed nodes?

Command.

Shell.

Raw.

Ping.

Multiple choice answers

B

B

A

B

B

C

Points to remember

The Ansible ad-hoc mode is used for simple non repetitive tasks,

which aren’t planned to be used in the future.

An Ansible playbook gives a programming flavor to Ansible.

An Ansible playbook is used for complex, repetitive tasks.

Ansible offers two keywords for creating loops – loop and

By default, the Ansible playbook will not provide any useful

information about the actual task; we must use the output

module to get the desired output.

Ansible playbooks will stop executing any more steps on a host

that has a task failed; we must use the command ignore_errors: if

we want to execute the remaining commands.

The Ansible Vault encrypts the variables and files, so that we can

protect sensitive content such as passwords or keys or even full

playbooks.

Key terms

Ansible ad-hoc The Ansible ad-hoc command is the one-liner

Ansible command that performs one task on the target host.

Ansible Ansible playbooks are one of the core features of Ansible

that tells Ansible what to execute. They are like a to-do list for

Ansible that contains a list of tasks.

CHAPTER 3

Ansible Advance Concepts

Before we start working with Ansible, let’s recap what was learnt

in the previous chapter. We discussed how to use Ansible in the

ad-hoc mode. We even wrote the basic playbooks covering loops,

conditional statements, and variables. We then covered some day-

to-day automation using Ansible.

In this chapter, we will discuss the advanced concepts associated

with Ansible. These concepts will help you write a professional

playbook.

Structure

In this chapter, we will cover the following topics:

Manage control tasks

Ansible file separation

Ansible include module

Ansible roles

Ansible optimization

Troubleshooting Ansible

Ansible file lookup

Ansible template

Ansible dynamic inventory

Ansible filters

Objective

After studying this chapter, you should be able to do the

following:

Write playbooks as per the standard.

Troubleshoot Ansible for complex tasks.

Optimize the overall performance of Ansible.

Create static and dynamic inventories.

Managing task control

This module covers the different solutions to control a task, which

includes the following topics:

with_items

Nested loops

When statement

Registering variables

Handlers

Tags

Errors

Ansible blocks

We discussed some of the options in the previous chapter at the

introductory level. In this chapter, we will focus on the practical

usage of these concepts.

With_items

In this section, we will explore the with_items in Ansible. It is

used for looping in Ansible. Loops are used to repeat a task

based on different items. Loops avoid writing multiple tasks.

with_items is a key word which will define a list of items that

needs to be processed. It is used as a label, listing the different

items. To refer to the items, {{item}} is used. We also have a

flexible option available to use the variables for a list of items. It

makes the Ansible playbook more diverse. We have seen the

examples for the straight-forward examples in the previous chapter,

so I will not explain them here. However, the option for complex

item is also available, so let’s understand the following example:

-name: Manage Group Membership for users

user:

name: “{{item.name}}”

state: present

groups: “{{item.group}}”

with_items:

- {name: ’Rony’, group: ‘student’}

- {name: ’Ali’, group: ‘teacher’}

- {name: ‘John’, group: ‘teacher’}

So, in the preceding example, {name: ’Rony’, groups: ‘students’} is

an item. However, in this example, an item is a dictionary, so we

can refer to the dictionary keys. When we refer the the playbook

with iterate on and Similarly, when we refer the playbook will

iterate on the user group name, which, in our example, are and

Let’s take another example, in which we will see the practical

usage of We want to uninstall two packages and delete the files

associated with them. The following is the example playbook:

- name: Clean-up the FTP and Webserver content

hosts: centos

task:

- name: Uninstall Packages

yum:

name: "{{item}}"

state: absent

with_items:

- httpd

- vsftpd

- name: Delete FTP and HTTP files

file:

path: "{{item}}"

state: absent

with_items:

- /var/www/html/index.html

- /var/ftp/pub/README

- /tmp/www/http_backup.tar

- /tmp/ftp/ftp_backup.tar

In the preceding example, we used two loops, one is to provide

the list of packages, which we need to delete, and the other will

provide the file paths, which we want to delete as part of

cleanup. These sorts of playbooks are very easy to expand and

reuse. For example, if we have to add another package to be

removed, all we need to do is to put the name in first

Nested loops (with_nested)

A nested loop is a loop within a loop. It is very common in

programming languages, in which two lists are used, and the task

will run on the items in the first list, and combine with the items

in the second list. I know, theory wise it looks complex but

actually it is not. So, let’s see the following example to

understand the concept:

task:

- name: Add Users in Groups

user:

name: "{{item[0]}}"

state: present

groups: "{{item[1]}}"

with_nested:

- [‘rony’,’ali’,’john’]

- [‘student’,’teacher’,’teacher’]

Nested loop is actually a better version of especially, when you

have to run multiple loops. Variables can be used in with_nested

same as

When statement

We have already discussed the when statement in Chapter 2,

Ansible Basics when discussing the conditional statements.

Conditionals allow to run the Ansible tasks only if the minimal

conditions have been met.

Registering variables

The idea of registering the variables is to store the output of a

task in a variable. The result is multi-value, each value is stored

in a key. To do something with it, we will need to refer to a

specific value variablename.value format. Let’s take the following

example to understand the concept:

- name: Understand Registering Variables

hosts: cen_node_01

tasks:

- name: Capture the output of who command in a variable

command: who

register: loggedin_users

- shell: echo "Ansible user is logged in"

when: loggedin_users.stdout.find('ansible') != -1

Output

The following is the playbook output:

$ ansible-playbook register_variable.yml -i inventory -v

Using /home/ansible/ansible/Chapter-03/ansible.cfg as config file

PLAY [Understand Registering Variables]

TASK [Gathering Facts]

*

ok: [cen_node_01]

TASK [Capture the output of who command in a variable]

changed: [cen_node_01] => {"changed": true, "cmd": ["who"],

"delta": "0:00:00.003309", "end": "2020-10-18 06:48:05.806548",

"rc": 0, "start": "2020-10-18 06:48:05.803239", "stderr": "",

"stderr_lines": [], "stdout": "ansible pts/0 2020-10-18 06:48

(master)", "stdout_lines": ["ansible pts/0 2020-10-18 06:48

(master)"]}

TASK [shell]

changed: [cen_node_01] => {"changed": true, "cmd": "echo

\"Ansible user s logged in\"", "delta": "0:00:00.003027", "end":

"2020-10-18 06:48:06.106427", "rc": 0, "start": "2020-10-18

06:48:06.103400", "stderr": "", "stderr_lines": [], "stdout": "Ansible

user s logged in", "stdout_lines": ["Ansible user s logged in"]}

PLAY RECAP

cen_node_01 :

ok=3 changed=2 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

$

The first thing to note here is that we have used the -v option

when executing the playbook. It will provide a verbose output and

we can see the stdout output variable has the Linux who

command output. The increasing number of v in –v option

increases the level of verbose output that the user will get for the

play run, like and

If we explore the playbook, we have executed the Linux who

command and saved the output in a variable named The actual

output value is stored in Now, in the second task, we took this

variable output and used the Ansible build-in function find() and

searched for the username Based on the find() output, we can

decide which action we want to perform next. In our playbook, we

only print Ansible users logged but it can be any action.

Let’s take another example which is more practical, and you may

use it for the day-to-day activities. The following is the playbook:

- name: Backup Linux user home directories

hosts: all

tasks:

TASK 1

- name: Create a directory for backups

file:

path: /var/bkpspool

state: directory

#TASK 2

- name: Retrieve the list of home directories

command: ls /home

register: home_dirs

#TASK 3

- name: add home directories in Backup folder

file:

path: /var/bkpspool/{{item}}

src: /home/{{item}}

state: link

with_items: "{{home_dirs.stdout_lines}}"

The goal of the preceding playbook is to create a backup folder,

get the list of home directories, and back them up in a backup

folder.

Let’s discuss each task separately as follows:

TASK 1

This task is very simple. All we did was create a folder on the

following location:

TASK 2

In this task, we created a variable named home_dirs and saved

the ls /home command output in it. We know the output of this

command is the list of all directories in the /home folder.

TASK 3

This is the actual place where all the magic happens. We use the

home_dirs.stdout_lines for For each item, we are creating a

symbolic link in the backup folder.

An important point to node is stdout and both store the output.

However, if we need the output line-by-line, then we use the

stdout_lines variable. If we need the output as a whole, then we

will use In the previous example, we needed the output in the

line-by-line format, since we needed to use with_item to iterate.

Handler

Handler is also an important concept in task control. We have

already discussed the handler in the previous chapter. However, I

will just state its properties for a recap. A Handler is a

conditional task that only runs after being called by another task.

It has a globally unique name and is triggered after all the tasks

in the playbook. A Handler can be triggered by one or more tasks

in a playbook. The Handler properties are the same as any task.

To trigger a handler, the playbook must have a notifying item,

which will call the name of the handler. More than one handler

can be called from a task. A Handler always runs in the order in

which the handler section is written, not in the order in which

they are called in the plays. A Handler cannot be included in the

playbook; they must be part of the playbook. We haven’t

discussed, include so far, but once we discuss, the roles and

include statement later in this chapter, this point will be cleared.

Tags

Tags are also an import part of the complex playbooks. Tags are

used at a resource level to give a name to a specific resource.

The –tags are used with the Ansible playbook to run only the

resources with a specific tag. When a task file is included in a

playbook, it can be tagged in the include statement. When tagging

a role or inclusion, the tag applies to everything in the role or in

the inclusion. To run a playbook with a specific tag, use the

command Ansible-playbook --tags This command will only run the

resources which matches the We can also use - - skip-tags

‘tagname’ to exclude a resource with a specific tag. We have a

special tag named which can be used to make sure that resource

is always executed, unless specifically excluded with - - When the -

- tag option is used to run a playbook, it can take up to three

specific tags as an argument. all is another the default tag, which

will run all the tasks; it is the default behavior of Ansible. An

alternative of tags is creating multiple playbooks. If you want to

create a single big playbook and segregate it based on tags, then

use tags, otherwise create multiple playbooks. The following

example will explain how to use the tags:

- name: Understand Ansible Tags

hosts: centos

tasks:

- name: Install network Analysis Packages

package:

name: "{{item}}"

state: installed

with_items:

- nmap

- wireshark

tags:

- network_analysis

- name: Install lamp packages

package:

name: "{{item}}"

state: installed

with_items:

- httpd

- mariadb-server

tags:

- lamp

In this example, if we want only the network analysis packages to

be installed, then we have to use the following command:

$ ansible-playbook ansible_tags.yml -i inventory --tags

network_analysis

Similarly, if we want to install only the lamp packages, the

following command will be used:

$ ansible-playbook ansible_tags.yml -i inventory --tags lamp

Dealing with errors

The Ansible default behavior is to stop the execution when the

task has failed. We have already discussed in the previous chapter

that we can use ignore_errors: yes and it will ignore the error and

the playbook with continue running. When we are dealing with

handlers, if a play fails, no handler will be executed. To overcome

this issue, we can use force_handler: yes in a playbook. There is

another interesting option called failed_when to define when to

consider a specific command failed. This is useful for the

commands that are producing a specific output. Let’s see the

following sample for our understanding:

tasks:

-shell: /usr/local/bin/mkusr.sh

register: mkusr_result

failed_when: “’password missing’ in mkuser_result.stdout”

In the preceding example, the task is considered as failed only if

the password missing is found in the registered variable.

If a module thinks it has changed the state of the affected

machine, it will report the status as If this is not the desired

option and you want to tweak this parameter, then the

changed_when=false option will do it.

Blocks

Blocks are used to logically group tasks. Blocks are useful for

error handling and when statements. One statement can be

applied to the block, so that it affects all the tasks in the block.

The following example will explain how to use blocks in playbooks:

--

- name: Understand Blocks

hosts: all

tasks:

- name: Installing Apache

block:

- package:

name: "{{item}}"

state: installed

with_items:

- httpd

- elinks

- mod_ssl

- service:

name: httpd

state: started

enable: true

when: ansible_distribution == 'CentOS'

Output

The following is part of the playbook output:

skipping: [ubu_node_01] => (item=httpd)

skipping: [ubu_node_01] => (item=elinks)

skipping: [ubu_node_01] => (item=mod_ssl)

skipping: [ubu_node_02] => (item=httpd)

skipping: [ubu_node_02] => (item=elinks)

skipping: [ubu_node_02] => (item=mod_ssl)

changed: [cen_node_02] => (item=httpd)

changed: [cen_node_01] => (item=httpd)

changed: [cen_node_02] => (item=elinks)

changed: [cen_node_01] => (item=elinks)

changed: [cen_node_02] => (item=mod_ssl)

changed: [cen_node_01] => (item=mod_ssl)

In the above example, we used the when statement at the block

level, which make sure that installation only happen on CentOS

hosts and skips the Ubuntu machines.

Blocks allow error handling; if a task fails, the task in the rescue

task can be executed for recovery. We also have an always task,

which will run regardless of success or failure of the task defined

in blocks or rescue. Let’s take the following example to

understand the rescue and always keywords in blocks:

- name: Error handling in Blocks

hosts: all

tasks:

- block:

- name: Upgrading Database

shell:

cmd: /opt/db_scripts/upgrade-database

rescue:

- name: Revert If Upgrade failure happens

shell:

cmd: /opt/db_scripts/revert-database

always:

- name: Restart the database

service:

name: mariadb

state: restarted

In this example, Ansible block option will upgrade the database. If

upgrade script executed properly, the rescue block will be ignored

and the always block will be executed.

In case upgrade script failed, the rescue block will be executed,

which will revert all the database changes; once it’s done, the

always block will restart the database. So, either block or rescue

will be executed at any time, but the always block will execute in

any case.

Ansible file separation

We will now be talking about file separation. So far, we've been

defining the variables in the same inventory file. However, this is

not the best practice. It is better to define these in a separate

variable file. To do this, first create a host_vars directory next to

the playbook and then create a file with the same name as that

of the server, which, in this case, is cen_node_02.yml and If you

remember when we deployed the lab in Chapter 1 Up and Running

with we can configure the credentials in the inventory file by using

the Ansible variables. We will move the variables and their values

from the inventory file into this new file. Remember to remove

the = sign and change it to a colon followed by a space; this is

because this new file is in a YAML format.

When the Ansible playbook is executed, Ansible automatically reads

the values from this file, and associates them with the host. So,

it's important to name the file with the same name as that of the

server, and also, it's important to name the folder because that's

the folder that Ansible looks set to find out whether there is a

variable file for that particular server. For the host variables, the

folder must be named host_vars and the group variables must be

named and you could have a file for each host inside this folder.

The following are the changes which we have made on our lab:

$ cat inventory

[centos]

cen_node_01

cen_node_02

[ubuntu]

ubu_node_01

ubu_node_02

$ tree

.

├── ansible.cfg

├── host_vars

│ ├── cen_node_02.yml

│ └── ubu_node_02.yml

└── inventory

1 directory, 4 files

$ cat host_vars/cen_node_02.yml

ansible_host: 10.0.0.11

ansible_user: admin1

ansible_password: Pass321

$ cat host_vars/ubu_node_02.yml

ansible_host: 10.0.0.21

ansible_user: admin1

ansible_password: Pass321

$

Ansible Output

$ ansible all -i inventory -a "whoami"

cen_node_01 | CHANGED | rc=0 >>

ansible

cen_node_02 | CHANGED | rc=0 >>

admin1

ubu_node_01 | CHANGED | rc=0 >>

ansible

ubu_node_02 | CHANGED | rc=0 >>

admin1

$

Ansible include statement

Let’s understand the include statement with an example; suppose

we have a playbook with two sets of tasks – one to install and

configure the database, and the other to install and configure the

web server. What if we need to reuse these tasks in different

playbooks where the requirement may be to only install the database

or to only install the web server? So, we first create two files under

a folder called naming them deploy_db.yml and and move the db

tasks into the first one and the web tasks into the second one.

Once we're done, we can add the include statements under the

task in our playbook to include the task from these external files:

Ansible roles

The Ansible roles provide a uniform way to load variables, tasks,

and handlers from the external files. The purpose of roles is to

keep the size of the playbooks manageable. Roles use a specific

directory structure with the location for default task, handlers,

templates, and variables. A role typically corresponds to the type

of service, for example, we have a role for docker, web service, or

database service. For specific groups of servers, specific playbooks

may be created to include one or more roles. To manage what

should happen, the default variables are set in the roles, which

can be overwritten at the playbook level. To make working with

the role easier, community roles can be downloaded from the

Ansible galaxy. Roles are defined in a role’s directory, which is

created in the project directory.

Directory structure for role

The following are the important folders for roles. Let’s see what

these folders contain, as follows:

$ tree .

.

└── test-role-1

├── defaults

│ └── main.yml

├── files

├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── README.md

├── tasks

│ └── main.yml

├── templates

├── tests

│ ├── inventory

│ └── test.yml

└── vars

└── main.yml

9 directories, 8 files

$

defaults

This folder contains a main.yml file with default values for

variables.

files

This folder has static files that are referenced by role’s tasks.

handlers

This folder contains a main.yml with handler definitions.

meta

This folder contains main.yml with information about the roles,

including author, license, platform, and dependencies.

tasks

This folder has a main.yml file with task definitions.

vars

This folder has a main.yml file with role variable definitions.

To create roles, we first create the role structure. We don’t have

to create structure manually. We can use the ansible-galaxy

command which is, by default, installed with Ansible. The

following command will create a role’s directory structure:

$ ansible-galaxy init test-role-1

Once the preceding command is executed, a new folder with a

name of test-role-1 will be created. Let’s see the content of the

folder, as follows:

$ tree .

.

└── test-role-1

├── defaults

│ └── main.yml

├── files

├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── README.md

├── tasks

│ └── main.yml

├── templates

├── tests

│ ├── inventory

│ └── test.yml

└── vars

└── main.yml

9 directories, 8 files

$

Once the structured role’s directory is created, we can define the

role content, and then use these roles in the playbook. Each role

has its own directory with specific subdirectories that exist in

~/roles and not in specific project directories. So, if we are not

using any specific subdirectory, we can keep it empty.

Role variables

The Role variables are defined in these variables have a high

priority and cannot be overwritten by the inventory variables. The

default variables can be defined in defaults/main.yml and have the

lowest precedence. So, we can use the default variables only if we

intend to have the variable overwritten somewhere else.

Defining role dependencies

We can expect some dependencies of roles like roles may include

other roles. Dependencies are written in meta/main.yml within the

role:

dependencies:

- {role: apache, port: 80}

- {role: mariadb, dbname: addresses, admin_user: Rony}

Order of execution in role

Normally, the tasks in a role is executed before the tasks of the

playbook using them, but we have two solutions to override it,

which are as follows:

pre_tasks are performed before the roles are applied.

post_tasks are performed after completing all roles.

The following is a sample playbook which gives an idea how to

implement the preceding discussed concepts:

- hosts: cen_node_01

pre_tasks:

- debug:

msg: 'Starting'

roles:

- role1

- role2

- role3

tasks:

- debug:

msg: Execute After roles'

post_tasks:

- debug:

msg: 'Last Task'

Ansible Galaxy

Ansible Galaxy is the community resource for getting and

publishing Ansible roles. The website for the Ansible Galaxy is as

follows:

https://galaxy.ansible.com/

Since it is a community resource, many roles that are ready to

use are available for download. The roles that are still in

development can also be followed. Let’s visit the site and see how

we can utilize the Ansible Galaxy. The following is a screenshot

taken from the official site:

Figure 3.1: Ansible Galaxy

We can go to search and look for any roles. For example, I have

searched nginx and got a couple of results, but the top most

result is from The score of the role, number of downloads, and

last imported are the key factors in choosing a role. Let’s suppose

we are happy with the statistics and want this role. Just click on

nginx and the following screen will be shown:

Figure 3.2: Ansible Galaxy geerlingguy Nginx role

All we need to do is just copy the installation command and run

on the Ansible control node. The following is the output that we

received after executing the command:

$ ansible-galaxy install geerlingguy.nginx

- downloading role 'nginx', owned by geerlingguy

- downloading role from https://github.com/geerlingguy/ansible-role-

nginx/archive/2.8.0.tar.gz

- extracting geerlingguy.nginx to

/home/ansible/.ansible/roles/geerlingguy.nginx

- geerlingguy.nginx (2.8.0) was installed successfully

$

As per the output, the role has been created on the location so

we can go to this directory and see the content of this role. The

following is the output from the folder:

$ tree

.

├── defaults

│ └── main.yml

├── handlers

│ └── main.yml

├── LICENSE

├── meta

│ └── main.yml

├── molecule

│ └── default

│ ├── converge.yml

│ └── molecule.yml

├── README.md

├── tasks

│ ├── main.yml

│ ├── setup-Archlinux.yml

│ ├── setup-Debian.yml

│ ├── setup-FreeBSD.yml

│ ├── setup-OpenBSD.yml

│ ├── setup-RedHat.yml

│ ├── setup-Ubuntu.yml

│ └── vhosts.yml

├── templates

│ ├── nginx.conf.j2

│ ├── nginx.repo.j2

│ └── vhost.j2

└── vars

├── Archlinux.yml

├── Debian.yml

├── FreeBSD.yml

├── OpenBSD.yml

└── RedHat.yml

8 directories, 23 files

$

Now we can use this role in our playbook.

Galaxy CLI tool

ansible-galaxy search will search for roles. This argument provided

with ansible-galaxy search will search in the role description. We

can use options like - - - - and - - galaxy-tags to narrow down

the search results. Let’s take the following example to search

$ ansible-galaxy search 'install nginx' --author 'geerlingguy'

Found 16 roles matching your search:

Name Description

---- -----------

chaos_jetzt.freescout Install and configure the freescout

helpdesk.

geerlingguy.certbot Installs and configures Certbot (for

Let's Encrypt).

geerlingguy.collectd-signalfx SignalFx Collectd installation for Linux.

geerlingguy.drupal Deploy or install Drupal on your

servers.

geerlingguy.fathom Fathom web analytics

geerlingguy.gitlab GitLab Git web interface

geerlingguy.munin Munin monitoring server for

RedHat/CentOS or Debian/Ubuntu.

geerlingguy.nginx Nginx installation for Linux, FreeBSD

and OpenBSD.

geerlingguy.php PHP for

RedHat/CentOS/Fedora/Debian/Ubuntu.

geerlingguy.pimpmylog Pimp my Log installation for Linux

geerlingguy.varnish Varnish for Linux.

leifmadsen.kibana-4 Kibana 4 for Linux

monsieurbiz.geerlingguy_php PHP for

RedHat/CentOS/Fedora/Debian/Ubuntu.

Oefenweb.nginx Set up (the latest version of)

NGINX in Debian-like systems

sarathkgit.nginx_geerlingguy Nginx installation for Linux, FreeBSD

and OpenBSD.

ubzyhd.nginx A ansible role to install NGINX +

apply basic security and hardening settings.

$

Once you have the name of the role, you can use the following

commands to get the information and install the role:

$ ansible-galaxy info geerlingguy.nginx

$ ansible-galaxy install geerlingguy.nginx

We have some more galaxy commands which are very helpful. The

following are the commands:

To remove a role from the Ansible control node, use the following

command:

$ ansible-galaxy remove geerlingguy.nginx

Next, we will create the directory structure for your own role, but

by default it will use the Ansible Galaxy API. We should specify

the username and role name as the argument. However, if you

want to work offline, use the following parameter

$ ansible-galaxy init myuser:My_role_name

$ ansible-galaxy init --offline myuser:My_role_name

Now, once role is either downloaded or created; we need to know

how to use the role in a playbook. We will create the following

playbook and add the role in it:

- name: How to use role

hosts: cen_node_01

roles:

- geerlingguy.nginx

Ansible optimization

In this module, we will cover the topics of optimizing the Ansible,

which will enhance the processing speed and result in a better

overall performance of Ansible. The following are some key Ansible

optimizing parameters.

Host patterns

Host patterns are about what you are addressing in a playbook or

the Ansible ad-hoc while running it. This simplest host pattern is

just a name of the host, an IP address may also be used as long

as they are available in the inventory. We can also use groups in

our lab environment – CentOS and Ubuntu are the two groups.

We also have the default groups available like we don’t have to

mention it in the inventory, it automatically knows all the host in

the inventory file. We also have which refers to all the host that

are not part of any group in the inventory. We can use * but

don’t forget to use single quote. A single quote is recommended

in all cases to ensure that the shell doesn’t interpret special

characters. Refer to the following example:

Ansible ‘*.example.com’ -i inventory –list-hosts

The preceding example means all the hosts in the inventory, which

has the domain name

Moreover, a comma-separated list of hosts is also allowed. The

following example clarifies one more important concept, which is,

we can list different items like host, group, and IP address in our

logic:

Ansible ‘cen_node_01.example.com,10.0.0.21’ -i inventory –list-hosts

Ampersand can be used as a logical operator, which means the

host matches both the items. This makes sense when we talk

about groups. For example, we have two groups, one is the

database and the other is the We need the hosts that are

common in both the groups. Then & will be used.

Exclamation point can be used as the not logic, which means, we

can specifically exclude a host by putting this operator:

Ansible ‘centos,!cen_node_01’ -i inventory –list-hosts

So, in this example from the CentOS group, all the members will

be included except

Configuring delegation

Sometimes, Ansible’s scope goes beyond the managed hosts, so

we have to configure the hosts that are not available in the

inventory. Think of the monitoring environment, where the remote

hosts need to be added in the environment or a DNS server that

needs to be modified after adding a server to the configuration.

We can run the tasks directly on the hosts involved, but that will

be slow. Fact-gathering needs to happen for all the hosts involved.

Delegation can happen to the different types of hosts like the

local machines, hosts outside the play, or hosts within or out of

the inventory. Let’s take the following example to see how can we

use delegations:

- name: Understand Delegation

hosts: cen_node_01

tasks:

- name: Get PS information from remote host

command: ps

register: remote_ps

changed_when: false

- name: Get PS information from local host

command: ps

delegate_to: localhost

register: local_ps

changed_when: false

- name: Print the output for remote PS

debug:

msg: "{{remote_ps.stdout}}"

- name: Print the output for local PS

debug:

msg: "{{local_ps.stdout}}"

Since localhost is not part of our inventory file, we will use the

Ansible delegation to run a command on it. The delegate module

will run on a host specified by in case you want to run the

delegate command on the Ansible master. We did it in the

preceding example, we can also use which is a shortcut for

However, this shortcut is only applicable for the Ansible control

node.

Addressing hosts that are in the inventory is straightforward, just

use the IP address or the host name. To address hosts outside

the inventory, use the add_hosts module. An important point to

node is, don’t forget to configure the delegate_to hosts with a

user account, sudo credentials, and SSH keys, because Ansible can

only help when it is authenticated on the server.

Delegation host outside of inventory

In this case, we will see how to address a host which is not

available in the inventory. However, as we discussed in the

previous section, we will be requiring credentials. When accessing

a host outside of the inventory, a temporary entry in the inventory

must be created by using Ansible will use the same connection

type and the details used for the managed host to connect to the

delegating hosts. To understand better, I have removed the

ubu_node_01 from the inventory and applied the following

playbook:

- name: Testing Add host

hosts: localhost

tasks:

#Task-1

- name: Add another host

add_host:

name: add_ubuntu

ansible_host: ubu_node_01

ansible_user: ansible

#Task-2

- name: Check where the command is running

command: hostname

delegate_to: add_ubuntu

register: output1

Task-3

- name: Check how facts are handled

command: echo "This is {{inventory_hostname}}"

delegate_to: add_ubuntu

register: output2

- name: Print the outputs

debug:

msg: "{{output1.stdout}}"

debug:

msg: "{{output2.stdout}}"

The following are the explanations for each task:

In this task, we will add a host which is not available in the

inventory.

We will execute the commands of the newly added host and

register them in a variable.

This is the trickiest part; we suspect that the Ansible built-in

variables will provide the details of the newly added host, but

actually it is not true. Facts gathering only work for the localhost

host, not for the added host. So, we will get the details of

localhost, when we print the output of the variable not the

delegated host.

The default behaviour regarding facts, is that facts are gathered on

the host where the playbook is running and not on the delegated

hosts, which is super confusing. However, we can use

delegate_facts: true to gather facts from the delegate_to

Parallelism in Ansible

Running the tasks in parallel will make Ansible faster. Ansible can

run tasks in parallel on all the hosts. By default, tasks run on five

hosts at once. This is because of the default configuration option,

which is forks=5 in /etc/ansible/ansible.cfg or wherever you put

the Ansible configuration file. However, if we change the value of

forks to any other number, that much Ansible hosts will run in

parallel. If we want to override the Ansible configuration file, then

we can use the --forks option with the playbook or ad-hoc mode.

We also have the serial keyword in a playbook to reduce the

number of parallel tasks to a value that is lower than what is

specified in the forks option.

Asynchronous tasks

Normally, Ansible waits for the completion of the tasks before

starting the next task. However, we can use the async keyword in

a task to run it in the background. For example, async: 3600 tells

Ansible to give the task an hour to complete. This is the

maximum amount of time permitted for a task. We also have the

poll: 10 option which indicates that Ansible will poll every 10

seconds to see if the command has been completed. Using async

allows the next task to be started as it will make the overall

playbook more efficient. It is recommended for the backup job,

updating packages, or downloading large files.

Ansible wait_for

It can be used in a task to check if a certain condition was met.

It may be useful to verify if the server restart was successful. Use

poll: 0 in a task to tell Ansible not to wait for completion of this

task, but to move on to the next task. Add ignore_errors as well,

to prevent an error condition arising, and have this task fail.

Ansible async_status

For a start and forget type of task, we can use the module to see

the current status of the task. This allows you to finish everything

in the playbook, and close the run when you get positive results

from

Troubleshooting Ansible

Troubleshooting Ansible is extremely important since we need to

know what’s happening if things don’t go as per the plan. The

following are the key topics when it comes to troubleshooting in

Ansible.

Ansible logging

By default, Ansible doesn’t log anything, because it has sufficient

information written in We can see the error messages directly on

the Ansible console. However, if we need the logs to be saved in

a file, then we can specify the log_path in the default section of

ansible.cfg to force the writing logs in files. We can also set the

$ANSIBLE_LOG_PATH variable to enforce the logging in a file. An

important point to note is that only the root user can log to so

we should consider the log files in the local playbook directory, or

provide the write permission on /var/logs for your automation

user. A recommended option is to save the logs in the local

directory, so that you don’t have to modify the system default

settings. Once we applied these logging parameters, the error

messages which were written on STDOUT will be written to the

log file. We also need to configure the logrotate on the Ansible

logs. The following example will demonstrate the creation of log

file. We have added the following highlighted line in the

ansible.cfg file’s default section:

[defaults]

log_path= errorlogs

We did not specify the full path, so Ansible took the relative path,

which means it will create the log file to the place where the

Ansible playbook is executed. Once it’s done you can run any

previously created playbook, and a new log file will be created.

Ansible common errors

Understanding the common errors will help troubleshooting the

playbooks. For example, if there is a connectivity issue like the

server is unreachable or wrong credentials, these are not actually

a playbook error. A playbook error can be a syntax error, extra

spaces, or things like that. We can use the ansible-playbook --

syntax-check playbook_name.yml command to check if the

playbook has any issue. If your playbook has many tasks, then --

syntax-check will produce a high volume of messages. To avoid

this, we can add --step to execute the tasks one by one. In this

way, troubleshooting will become easy.

The Ansible playbook’s output messages also give a good hint

during troubleshooting. For example, the play header will show us

which play is currently executed, and the task header will show

which task is creating an error. So, automatically, when the error

comes, we know which playbook lines have the error. Moreover,

we can increase the log detail by adding -v or -vv or -vvv or -

vvvv which add the following verbosity levels:

-v option mean verbosity in output data.

-vv mean verbosity in input and output data.

-vvv also includes information about connection to manage host.

-vvvv includes information about plugins, users, and scripts that

have been executed.

By adding each we are getting more and more logs for

troubleshooting.

Troubleshooting managed hosts

ansible-playbook - - check playbook.yml is used to perform the

test without modifying anything on the targeted hosts. However,

the Ansible modules that we are using, must offer support for the

check mode, because if the module doesn’t support the check

mode, nothing will be shown. We can also use check_mode to

specify if a specific task needs to be executed in the check mode

or not. So, if the check_mode: task will to be executed during

check mode and if the check_mode: task will not be executed

during check mode.

Ansible modules for troubleshooting

Some Ansible modules provide additional information about the

host status; check the following as examples:

The uri module can connect to a URL and check for specific

content.

The script module supports execution of scripts on managed

nodes.

The stat module can check if specific files are present on the

managed nodes.

The assert module evaluate if given expressions are true with an

optional custom message

Ansible ad-hoc commands for troubleshooting

We can use the Ansible ad-hoc commands to perform quick tests

before running the playbooks on the managed nodes. The

following are a few of the examples:

Check if specific package is installed:

$ ansible cen_node_01 -i inventory -m yum -a " name=httpd

state=present"

Check if manage host has the required disk size available:

$ ansible cen_node_01 -i inventory -a "df -h"

Check managed host RAM and swap utilization:

ansible cen_node_01 -i inventory -a "free -h"

Check if specific user is available:

$ ansible cen_node_01 -i inventory -m user -a 'name=ansible'

Check if the SSH connection is properly established with managed

host:

Ansible file lookup

In this section, we will be talking about lookups. So far, we've

been storing the credentials for our target servers inside the

inventory file or the var_host folders. What if there are too many

servers or this information is already available elsewhere? Let's say,

we have the credentials of the servers stored in a CSV file in a

host name and password format – the first column being the

host name and the second column being the password. To read

the contents of the file, while the Ansible playbook is running and

to get the password associated to a host, we can use the lookup

plugin. The following is how we use the lookup plugin:

{{lookup('csvfile', 'cen_node_03 file=tmp/my_servers.csv

delimiter=,'}}

For example, in this case, the first argument that we passed to

the lookup plugin is the type of the file which happens to be csv

file in this case. There are a number of other options available

that we'll see in a bit. Then comes the value to lookup. For

example, here we’d like to lookup the information about the server

followed by the file we are looking at. For example, in this case,

the file is stored under the tmp directory and is called and finally,

the delimiter which happens to be comma in this case, because

it's a CSV file. If you have a file which uses another separator

maybe like a semicolon or something, then you could specify that

here. So, this same lookup plugin for the CSV file supports

multiple other character’s separated file formats as well. In this

case, this whole function or plugin is going to return the

password from the CSV file.

There are a couple of lookup plugins available, such as the

following:

CSV file lookup

INI file lookup

Credstash lookup

DNS lookup

MongoDB lookup

The information about this can be seen in the Ansible

documentation page under the Special topics and lockups playbook.

Ansible template

Ansible has a very useful module template, it provides the ability

to use the templates in which, we can make use of the Ansible

variables, conditions to generate the specific data formats, and

eventually provide a custom template for each manage host.

Afterwards, this template will be transferred to manage hosts. We

can also create a specific template for Windows by using the

win_template module. The template concept is quite frequently

used in the DevOps world. However, it is also applicable for the

networking devices which have the configuration files in the HTTP

or XML formats.

The template data is generated, based on the Jinja2 templates.

The Jinja2 template is a modern-day templating language for the

Python developers; since Ansible itself is written in Python so we

can leverage the Jinja2 templating benefits here. Jinja2 templates

are used to create the HTML, XML, or other mark-up formats that

returned to the user via an HTTP request.

In futuristic technologies, we have less requirement for static data

and more for the dynamic data being requested from the end

users. Therefore, Jinja2 templating is being used. The templates

are processed by the Jinja2 templating engine. Also, the way these

templates are formatted is an important aspect.

To use the template, we have to set at least the following two

parameters:

This is the source path for the template file with relative or

absolute path.

The destination path, where you want to copy the template on the

managed hosts. Moreover, if the directory path is given, then a

file with the same name as the template will be created.

We also have the optional parameters, let’s discuss them for a

better understanding:

This option is used to set the permission for the destination file.

This option is used to change the group of the file on remote

hosts.

This option is used to change the owner of the file on remote

hosts.

By default, this option is set to which means if there is an

already existing file on the destination, then the target file will be

overwritten. However, if we explicitly set this option to then it will

not replace the existing file.

If the template file already exists and you want it to have a

backup, then use this parameter and set to By doing this, every

time a new file with the same name is pushed from the controller

node, then the older file on the remote hosts will be renamed

with the name with date and time.

We can also enforce the new-line sequence. To specify the newline

sequence to use for templating files, the acceptable values are \n

and

Let’s take a couple of the following examples to understand how

the template works in Ansible.

Example 1:

In this example, we will transfer a plain text template to managed

nodes:

Playbook

The following is the playbook used for this example:

- name: Template Example 1

hosts: centos

tasks:

- name: understand Ansible Template

template:

src: template01.j2

dest: /tmp/template-01.txt

Ansible output

The following is the output from the Ansible playbook:

$ ansible-playbook template_example01.yml -i inventory

PLAY [Template Example 1]

TASK [Gathering Facts]

*

ok: [cen_node_02]

ok: [cen_node_01]

TASK [understand Ansible Template]

ok: [cen_node_02]

ok: [cen_node_01]

PLAY RECAP

cen_node_01 :

ok=2 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

cen_node_02 :

ok=2 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

$

Verification

If the Ansible playbook is executed properly, the template will be

transferred on the Ansible managed nodes. We are using the

following commands to verify the template creation:

$ ssh cen_node_01 "cat /tmp/template-01.txt"

This is simple template file

$ ssh cen_node_02 "cat /tmp/template-01.txt"

This is simple template file

$

Explanation

So, we have a plain text template file which we want to transfer

to the manage nodes. Since the template and the playbook, both

are in the same folder, we have used the relative path, otherwise

we have to use the full path like /home/ansible/download/ The

rest of the example is straight-forward.

Example 2:

Let’s add some built-in variables or facts to understand how we

can integrate them in the out templates.

Playbook

The following is the Ansible playbook used for this example:

- name: Template Example 2

hosts: centos

tasks:

- name: understand Ansible Template with FACTS

template:

src: template02.j2

dest: /tmp/template-02.txt

Jinja2 template file

The following is the Jinja2 template file for this example:

Server Details for template

Hostname: {{ansible_hostname}}

IP Address: {{ansible_all_ipv4_addresses}}

Operating system: {{ansible_distribution}}

Playbook verification

We can open the destination files to verify if the template worked

as per requirements:

$ ssh cen_node_01 "cat /tmp/template-02.txt"

Server Details for template

Hostname : cent_node_01

IP Address: ['10.0.2.15', '10.0.0.10']

Operating system: CentOS

$ ssh cen_node_02 "cat /tmp/template-02.txt"

Server Details for template

Hostname : cent_node_02

IP Address: ['10.0.2.15', '10.0.0.11']

Operating system: CentOS

$

Explanation

This is an important example, which will explain how the dynamic

data can be added in the template. So, here we use the Ansible

facts and when the playbook is executed, Ansible intelligently

replaces the facts with the respective managed host details. I

hope the basic idea of the template module is clear so far. We

can also use our own variables instead of facts, and Ansible will

replace these variables with the values when the playbook is

executed.

Ansible dynamic inventory

We have already discussed about the Ansible inventory file, which

has the host details available; such an inventory is called the

static inventory. However, if Ansible has to cover all the IT

domains, then the static inventory is not realistic in the

production environments. In the real world, infrastructure keeps

changing rapidly. We also add new nodes and remove the

unwanted nodes. This is very common, especially for the cloud

and container environments, where the nodes are added and

removed based on usage. Therefore, Ansible came up with a

concept called dynamic which fetches the list of nodes from the

infrastructure environments in real time.

In the modern IT environment, the sources of host nodes can be

AWS, Azure, OpenStack, containers, and LDAP systems. These

systems have their list of nodes and Ansible integrates with such

external dynamic inventory.

In Ansible, we have the two following ways to connect to the

external dynamic inventories:

Via This is the older way which ensures backward compatibility.

Ansible Ansible recommends this over the scripts for dynamic

inventory, since the plugins are updated with the Ansible core

code.

The Dynamic inventory scripts are written in a programming

language like Python, PHP, and so on. When using the script,

they get real time data from the target source environments, like

AWS, OpenStack, GCP, and so on. The Ansible community have

already developed such kind of scripts for the majority of

platforms. If we have good programming skills, we may write such

scripts as well, but using scripts is not very well-documented and

not successful every time. Normally, we download the scripts for

the source environment and set the env variable as per the

guidelines available with script. These scripts are maintained by

the Ansible community. Mostly, the scripts are written in Python

and named as Along with these Python scripts, there are the INT

files as well, which are needed to set the environment, but this is

dependent on the script that we are using.

In Ansible, we have a set of available inventory plugins. Similarly,

we can create our own plugins. Normally, the inventory returns

the list of items in the JSON format. Ansible provides a bunch of

inventory plugins, using which we can use to get the list of target

hosts on which you will be running any task or play. For example,

we can use the following commands to get the list of available

Ansible plugins for our Ansible. These plugins will vary, depending

on which Ansible version we are using:

$ ansible-doc -t inventory -l

advanced_host_list Parses a 'host list' with ranges

auto Loads and executes an inventory plugin

specified in a YAML config

aws_ec2 EC2 inventory source

aws_rds rds instance source

azure_rm Azure Resource Manager inventory plugin

cloudscale cloudscale.ch inventory source

constructed Uses Jinja2 to construct vars and groups

based on existing inventory

docker_machine Docker Machine inventory source

docker_swarm Ansible dynamic inventory plugin for Docker

swarm nodes

foreman foreman inventory source

gcp_compute Google Cloud Compute Engine inventory

source

generator Uses Jinja2 to construct hosts and groups

from patterns

gitlab_runners Ansible dynamic inventory plugin for GitLab

runners

hcloud Ansible dynamic inventory plugin for the

Hetzner Cloud

host_list Parses a 'host list' string

ini Uses an Ansible INI file as inventory source

k8s Kubernetes (K8s) inventory source

kubevirt KubeVirt inventory source

linode Ansible dynamic inventory plugin for Linode

netbox NetBox inventory source

nmap Uses nmap to find hosts to target

online Online inventory source

openshift OpenShift inventory source

openstack OpenStack inventory source

scaleway Scaleway inventory source

script Executes an inventory script that returns

JSON

toml Uses a specific TOML file as an inventory

source

tower Ansible dynamic inventory plugin for Ansible

Tower

virtualbox virtualbox inventory source

vmware_vm_inventory VMware Guest inventory source

vultr Vultr inventory source

yaml Uses a specific YAML file as an inventory

source

$

I have highlighted the most famous Ansible modules. Once we

get the name of the module for our infrastructure, we can use

the following command to get more details on the plugin:

$ ansible-doc -t inventory name>

To use the Ansible plugin, we have to enable it, in where we have

the enable_plugins parameter for this purpose. The following are

the default list of enabled plugins that ships with Ansible:

[inventory]

enable_plugins = host_list, script, auto, yaml, ini, toml

If the plugin is from a collection, then we need to use the fully

qualified name:

[inventory]

enable_plugins = namespace.collection_name.inventory_plugin_name

For example, if we want to enable aws_ec2 plugin, then we have

to add the following line in

demo.aws_ec2.yml

plugin: amazon.aws.aws_ec2

We will be using the dynamic inventory in the following chapters,

when we discuss the cloud administration with Ansible.

Ansible filters

When writing playbooks in Ansible, we need data manipulation,

processing, and formatting, since the output of one task may be

used as the input for another task. For example, if we are writing

a playbook for the network and the first task is to check the

default route, then use the Ansible filters to get the service

provider’s IP address; once we have the IP address, we will use

the ping module to check the reachability.

We have a set of filters, the Jinja2 template filters, and the

custom filters. Filters in Ansible are from Jinja2, so the input data

is transformed inside a template expression. Also, templating

happens on the Ansible control node, not the managed nodes. So,

the filters get executed on the Ansible control node. This is

helpful, as in this way, the amount of data which needs to be

transferred to the remote hosts is lesser.

Ansible has a rich set of filters powered by Jinja2 templating. We

input some data into these templates and the Jinja2 template

engine process that data and provide the formatted output.

Filtering is very useful in debugging. The following are a list of

built-in filters shipped by Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Jinja2:

Table 3.1: Jinja Build-in Filters

Let’s discuss each filter to understand their functionality, as

follows:

This filter will return the absolute value of the argument.

This filter will get an attribute of an object.

This filter will batch the items. It works pretty much like slicing.

This filter will capitalize a value. The first character will be

uppercase, all others will be lowercase.

This filter will centre the value in a field of a given width.

This filter will provide the default value to a variable if it is

undefined.

dictsort(): This filter will sort a dictionary and yield (key, value)

pairs.

This filter will convert the characters and ” in strings to the

HTML-safe sequences.

This filter will format the value like a human-readable file size

(that is, 200 KB, 400 MB, and so on).

This filter will convert the value into a floating point number.

This filter will enforce the HTML escaping.

This filter will apply the given values to a printf format string like

string % values.

This filter will group a sequence of objects by an attribute, using

Python’s

This filter will return a copy of the string with each line indented

by four spaces.

This filter will convert the value into an integer.

This filter will return a string which is the concatenation of the

strings in the sequence. The separator between the elements is an

empty string by default, but we can define it with the optional

parameter.

This filter will return the last item of a sequence.

This filter will return the number of items in a container.

This filter will convert the value into a list. If it was a string, the

returned list will be a list of characters.

This filter will convert a value to lowercase.

This filter will apply a filter on a sequence of objects.

This filter will return the largest item from the sequence.

This filter will return the smallest item from the sequence.

This filter will pretty print a variable. It is useful for debugging.

This filter will return a random item from the sequence.

This filter will filter a sequence of objects by applying a test to

each object, and rejecting the objects that pass the test.

This filter will filter a sequence of objects by applying a test to

the specified attribute of each object, and rejecting the objects

that pass the test.

This filter will return a copy of the value with all the occurrences

of a substring replaced with a new one provided in the

parameters.

This filter will reverse the object.

This filter will round the number to a given precision.

This filter will mark the value as safe, which means that in an

environment with automatic escaping enabled, this variable will not

be escaped.

This filter will filter a sequence of objects by applying a test to

each object, and only selecting the objects which pass the test.

This filter will filter a sequence of objects by applying a test to

the specified attribute of each object, and only selecting the

objects with the test succeeding.

This filter will slice an iterator and return a list of lists containing

those items.

This filter will sort using Python’s

This filter will make a string Unicode if it isn’t already.

This filter will return a title cased version of the value.

This filter will dump a structure to JSON, so that it’s safe to use

in the

	Start

